varian⊕ eimac 3CPX3500U7 HIGH-MU TRIODE ## TECHNICAL DATA The 3CPX3500U7 is a ceramic/metal high-mu power triode designed for pulse applications. Utilizing beam-forming cathode and control grid geometry, this tube provides the gain of a tetrode with circuit advantages and simplified design of a triode. The attributes of high gain, low grid interception and outstanding intermodulation performance make this tube well suited for applications such as MRI and wind-profile radar service, or for pulsed linear amplifier service. The 3CPX3500U7 is rated for pulsed rf amplifier service at a maximum plate voltage of 6500 Vdc. This tube is also useful in pulse modulator or pulse regulator service where accurately controlled waveforms are required; in this service the maximum rated plate voltage holdoff is 13 kVdc. The peak plate current rating in either service is 54 amperes. The anode is forced-air cooled for 3500 watts of dissipation. ## GENERAL CHARACTERISTICS 1 | | | | ΑL | |--|--|--|----| | | | | | | Cathode: Oxide Coated, Unipotential | • . | |---|-----------------------------| | Heater Voltage | 15.0 + 0.75 V | | Heater Current, at 15.0 volts | - 14.0 A | | Minimum Warmup Time (before application of rf drive and high voltage) | • 5 Min | | Heater-Cathode Potential (maximum) | +250 V | | Amplification Factor (approximate) 2 | 200 | | Direct Interelectrode Capacitance (grid grounded) ² | | | Cin | . 84.5 pF | | Cout | 24.8 pF | | Cpk | 0.29 pF | | Highest Frequency for Maximum Ratings in Pulsed RF Service | . 400 MHz | - Characteristics and operating values are based on performance tests. These figures may change without notice as the result of additional data or product refinement. Varian EIMAC must be consulted before using this information for final equipment design. - Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191. #### MECHANICAL Maximum Overall Dimensions | Length | Harring of Craff Dimensions | | |--|---|---| | Diameter | Length | • • • • • • • • • • • • • • • 6.81 in: 157 mm | | Net Weight | Diameter | 4.94 in: 12.55 mm | | Operating Position | Net Weight | 5.5 lb: 2.5 kg | | Maximum Operating Temperature: Ceramic/Metal Seals or Anode Core Base | Operating Position | • • • • • • • • • • Vertical. Base Up or Down | | Maximum Operating Temperature: Ceramic/Metal Seals or Anode Core Base | Cooling | Forced Air | | Available Socket, for HF and VHF Applications | Maximum Operating Temperature: Ceramic/Metal Seals | or Anode Core | | Available Socket, for HF and VHF Applications | Base | •••• Special Coaxial | | Available Contact Collets (for UHF Applications): Grid | Available Socket, for HF and VHF Applications | FIMAC SK-2500 | | Heater/Cathode EIMAC P/N 720637 Heater EIMAC P/N 720638 Recommended Air Chimney | Available Contact Collets (for UHF Applications): G | Grid | | Heater EIMAC P/N 720638 Recommended Air Chimney | | | | Recommended Air Chimney EIMAC SK-306 | | | | Available Anode Connector Clip, for DC, Pulse and LF/HF Applications EIMAC ACC-3 | | | | LIMAC ACC-3 | Available Anode Connector Clin for DC Pulse and L | LE/HE Applications FIMAC ACC 3 | | | The real of the second | ci/iii Appricacions • • • • • • • • • • • • • • • • • • • | | PULSED RADIO FREQUENCY AMPLIFIER CATHODE DRIVEN Class B | TYPICAL OPERATION - Measured Data (at 400 MHz)
Class B Cathode Driven - Du = 0.05, tp = 60 uSec | |---|--| | ABSOLUTE MAXIMUM RATINGS: | Plate Voltage 6400 Vdc | | DC PLATE VOLTAGE 6500 VOLTS | Cathode Bias Voltage +65 Vdc | | PEAK PLATE CURRENT # 54 AMPERES | Pulse Plate Current # 12.0 Adc | | DC PLATE CURRENT 3.0 AMPERES | Pulse Grid Current * # 600 mA | | PLATE DISSIPATION | Peak Driving Power * # 4.8 kW | | DC GRID CURRENT +0.10 AMPERE | Peak (Useful) Power Output # ¶ 40 kW | | INSTANTANEOUS PUSITIVE GRID VOLTAGE 425 VOLTS | | | | Cathode Input Impedance 19 Ohms | | GRID DISSIPATION 25 WATTS | Resonant Load Impedance 250 Ohms | | * Approximate value. # Average during the pulse. | Power Gain 9.2 dB | VA5057(Effective September 1988) ¶ Measured at the load. Printed in U.S.A. | PULSED RADIO FREQUENCY POWER AMPLIFIER
Cathode Driven, Class AB Service | TYPICAL PERFORMANCE, to 30 MHz (measured data) | |--|---| | , | Plate Voltage 6.0 Vdc Zero-Signal Plate Current 0.5 Adc Pulse Plate Current # 2.6 a | | ABSOLUTE MAXIMUM RATING: | | | DC PLATE VOLTAGE 6.5 KILOVOLTS | Cathode Bias +43 Vdc
Pulse Grid Current * # 15 ma | | PEAK PLATE CURRENT # 54 AMPERES DC PLATE CURRENT 3.0 AMPERES | Peak Driving Power * 250 w | | PLATE DISSIPATION 3.5 KILOWATTS | Pulse Power Output # ¶ 10 kw | | DC GRID CURRENT ±0.1 AMPERE | Power Gain | | GRID DISSIPATION 25 WATTS | Resonant Load Impedance 1100 Ohms | | * Approximate value. | Intermodulation Distortion (typical): | | # Average during the pulse. | 3rd Order Products45 dB | | ¶ Power delivered to the load. | 5th Order Products50 dB | | Note: 1. Pulse duration, pulse plate current and duty | are interrelated; see DERATING CHART on page 5. | | To prevent excessive anode dissipation the t | ube must be cut off between pulses; a bias switching | | scheme should be employed to accomplish this | . IMD is that of a similar product in CW service. | | | | | PULSE MODULATOR OR SWITCH TUBE | SERVICE | TYPICAL OPERATION - Pulse Modulator Service | |---|---|---| | ABSOLUTE MAXIMUM RATINGS: DC PLATE VOLTAGE | 54 AMPERES SEE DERATING CHART 3.5 KILOWATTS -250 VOLTS 25 WATTS +0.1 AMPERE | Plate Voltage 8.0 kVdc Pulse Plate Current 50 a Grid Bias Voltage -110 Vdc Pulse Positive Grid Voltage 240 v Pulse Grid Current * 1.0 a Pulse Duration 5 uSec Duty 0.0006 Pulse Driving Power * 350 w Pulse Output Power * 300 kw Pulse Output Voltage 6.0 kv | TYPICAL OPERATION values are obtained by actual measurement or by calculation from published characteristic curves. Adjustment of the rf drive voltage to obtain the specified plate current at the specified bias and plate voltage is assumed. If this procedure is followed, there will be little variation in output power when the tube is replaced, even though there may be some variation in grid current. The grid current which occurs when the desired plate current is obtained is incidental and may vary from tube to tube. This current variation causes no performance degradation providing the circuit maintains the correct grid/cathode voltage in the presence of the current variation. ### APPLICATION #### MECHANICAL MOUNTING - The 3CPX3500U7 should be mounted vertically, anode up or down, and should be protected from vibration and shock. STORAGE - If a tube is to be stored as a spare it should be kept in its original shipping carton, with the original packing material, to minimize the possibility of handling damage. COOLING - At full rated anode dissipation, at sea level, with cooling air at $50\,^{\circ}\mathrm{C}$ maximum, a minimum of 240 cfm of air must be passed through the anode cooler fins in the base-to-anode direction. An SK-306 chimney may be required to confine airflow to the cooling fins and minimize escaping air. The pressure drop across the cooler with this air flow will be approximately 1.8 inches of water. The blower selected in any given application must be capable of supplying the desired air flow at a back pressure equal to that shown, plus any drop resulting from filters, ducting, or socketing or contact arrangements. It is considered good engineering practice to design for a maximum anode core temperature of 225 $^{\circ}\text{C},$ and temperature-sensitive paints are available for checking base and seal temperatures before any design is finalized. EIMAC Application Bulletin #20 titled TEMPERATURE MEASUREMENTS WITH EIMAC POWER TUBES discusses this subject and is available on request. It is also considered good practice to allow for variables such as dirty air filters, rf seal heating, and the fact that the anode cooling fins may not be clean if the tube has been in service for some length of time. Forced air cooling of the base is also required, with air directed past the seal areas. An air interlock system should be used to automatically remove all voltages from the tube in case of even partial failure of the tube cooling air. Air flow must be applied before or simultaneously with the application of power, including the tube heater, and should normally be maintained for several minutes after power is removed for tube cooldown. #### ELECTRICAL ABSOLUTE MAXIMUM RATINGS - Values shown for each type of service are based on the "absolute system" and are not to be exceeded under any service conditions. These ratings are limiting values outside which serviceability of the tube may be impaired. In order not to exceed absolute ratings the equip- ment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by a safety factor so the absolute values will never be exceeded under any usual conditions of supply-voltage variation, load variation, or manufacturing variation in the equipment itself. It does not necessarily follow that combinations of absolute maximum ratings can be attained simultaneously. HIGH VOLTAGE - Normal operating voltages used with this tube are deadly. Equipment must be designed properly and operating precautions must be followed. Design equipment so that no one can come in contact with high voltages. Equipment must include safety enclosures for the high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage capacitors whenever access doors are opened. The interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Remember HIGH VOLTAGE CAN KILL. For pulse modulator or regulator service anode voltage should not exceed 13 kVdc at sea level. This value assumes some safety factor and assumes a clean tube with no buildup of dirt or grime across the insulating ceramic. At higher altitudes a reduction in voltage may be required to preclude the possibility of external tube flashover. <code>HEATER/CATHODE OPERATION - Nominal heater voltage for the 3CPX3500U7 is 15.0 volts, measured at the base of the tube, and short-term variations should be limited to plus/minus 0.75 volt for good life and consistent performance.</code> When the tube is used at VHF-UHF frequencies where high duty is anticipated, a means should be provided to reduce heater voltage during operation to compensate for back-heating of the cathode due to transit-time effects. This back-heating is a function of operating frequency, duty, and plate loading so actual operating heater voltage should be determined empirically during product development. (See paragraph VHF-UHF OPERATION for additional information). Pulse current capability of the 3CPX3500U7 is dependent on cathode temperature, which in turn is dependent on heater voltage. For most consistent performance in switch tube or modulator service regulation of the heater voltage to limit variation to plus/minus one percent is recommended. Heater voltage should be measured with a known accurate RMS-responding meter. CATHODE WARMUP/COULDOWN TIME - It is recommended that heater voltage be applied for a minimum of 5 minutes before anode voltage and rf drive voltage are applied, to allow for proper conditioning of the cathode surface. It is also recommended that after all voltages are removed from the tube that air cooling be allowed to run for several minutes to allow for proper cooldown. CW OPERATION - Normal Class C operation is not permitted. Operation should be restricted to Class A, AB and B service. Operation in pulsed Class C is permissible only with low duty and short duration service. INPUT CIRCUIT - When this tube is operated as a grounded-grid rf amplifier, the use of a resonant tank in the cathode circuit is recommended to obtain greatest linearity and power output. For best results with a single-ended amplifier it is suggested that the cathode tank circuit operate at a "Q" of three or more. GRID OPERATION - The maximum rated dc grid bias voltage for the tube is -250 volts and the maximum grid dissipation is 25 watts. The maximum instantaneous positive grid voltage must not exceed 425 volts, and average grid current should never exceed 100 mAdc. In normal applications the grid dissipation will not approach the maximum rating. In applications where pulse duration exceeds 100 Ms or duty factor is high, the electrode dissipation ratings may prevent attaining peak plate current substantially over the dc rating. Oxide cathode tubes may exhibit reverse grid current. Protective circuitry for detection of overload and fault conditions should be capable of accepting current flow in either direction. This type of circuitry is necessary to prevent excessive grid dissipation and resulting tube degradation which can occur if proper output (plate) tuning or loading is lost due to failure in the tuned circuit or failure in the load. A protective spark gap such as the Siemens #Bl-C145 connected between the cathode and grid will help protect the tube in the event of an internal arc. A maximum of four (4) joules total energy may be permitted to dissipate into a grid-cathode arc. Amounts in excess of this will permanently damage the cathode or grid structure. Additional information is given in EIMAC Application Bulletin #17 titled FAULT PROTECTION, available on request. PLATE OPERATION - The anode of the 3CPX3500U7 is nominally rated for 3500 watts with forced-air cooling. In pulse service the average anode dissipation may be calculated as the product of pulse anode current, pulse tube-voltage drop during conduction, and the duty factor. Actual dissipation may often exceed the calculated value, if pulse rise and fall times are appreciable compared to pulse duration. This occurs because long rise and fall times allow plate current to flow for longer periods in the high tube-voltage drop region. ANUDE CURRENT - For pulse service, either as a switch tube pulse modulator or voltage regulator, an anode current (during the pulse) of up to 54 amperes is available. Peak current capability, pulse duration, and duty factors are interrelated and the PULSE DERATING chart should be consulted. To use this chart, enter with pulse duration and note the intersection with the desired pulse anode current. At this intersection read off values of maximum duty and/or pulse repetition rate. The pulse derating chart is intended to allow selection of operating parameters which give a reasonable tube life. Uperating under experimental combinations of maximum plate current and pulse duration which are outside the ranges of the chart may give useful results at low repetition rates, with a resulting tube life commensurate with that type of operation. New designs using tubes in pulse applications should include consideration of tube-to-tube performance variations which may effect equipment performance. FAULT PROTECTION - All power tubes operate at voltages which can cause severe damage in the event of an arc, especially in cases where large amounts of power supply stored energy are involved. Some means of protection is advised in all cases, and it is imperative that a series resistor be used in the lead from the power supply to the anode circuit to limit peak current and help dissipate the energy in the event of a tube or circuit arc. A resistance of 10 ohms, with at least a 200W rating, in the positive plate power supply lead will help protect the tube in the event of an arc. crowbar circuit which utilizes a high-speed switch tube is especially recommended for protection of the 3CPX3500U7 in pulse service. Energy dissipated in the event of an arc must be limited to no more than 4 joules to prevent damage to the tube and consequential degradation in performance. EIMAC Application Bulletin #17 titled FAULT PRO-TECTION discusses this subject and is available on request. VHF-UHF OPERATION - Operation at VHF and UHF under CW conditions should be conducted with heavy plate loading and the lowest drive power consistent with satisfactory performance. It is preferable to operate at a sacrifice in efficiency to obtain increased tube life. VHF-UHF driving power will be greater than calculated because of higher circuit losses. INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This test procedure "ground". eliminates any capacitance reading to The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good inter-changeability of tubes over a period of time. The capacitance values shown in the technical data are taken in accordance with Standard RS-191. The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in his application. Measurements should be taken with the mounting which represents the approximate final layout if capacitance values are highly significant in the design. RADIO-FREQUENCY RADIATION - Exposure to strong rf fields should be avoided, especially at frequencies above 300 MHz, where energy absorption by the human body is significant. The human eye is particularly sensitive. Prolonged exposure to rf radiation should be limited to 10 milliwatts per square centimeter (Occupational Safety & Health Administration (OSHA) standard). It is generally accepted that exposure to "high levels" of rf radiation can result in severe injury, including blindness. CARDIAC PACEMEAKERS MAY BE EFFECTED. SPECIAL APPLICATIONS - When it is desired to operate this tube under conditions widely different from those listed here, write to Varian EIMAC, attn: Product Manager, 301 Industrial Way, San Carlos, CA 94070 U.S.A. ### OPERATING HAZARDS PROPER USE AND SAFE OPERATING PRACTICES WITH RESPECT TO POWER TUBES ARE THE RESPONSIBILITY OF EQUIPMENT MANUFACTURERS AND USERS OF SUCH TUBES. ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES OR EQUIPMENT WHICH UTILIZES SUCH TUBES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY. DO NOT BE CARELESS AROUND SUCH PRODUCTS. The operation of this tube may involve the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel: - a. HIGH VOLTAGE Normal operating voltages can be deadly. Remember that HIGH VOLTAGE CAN KILL. - b. LOW-VOLTAGE HIGH-CURRENT CIRCUITS Personal jewelry, such as rings, should not be worn when working with heater contacts or connectors as a short circuit can produce very high current and melting, resulting in severe burns. - c. RF RADIATION Exposure to strong rf fields should be avoided, even at relatively low frequencies. The dangers of rf radiation are more severe at UHF and microwave frequencies and can cause serious bodily and eye injuries. CARDIAC PACEMAKERS MAY BE EFFECTED. d. HOT SURFACES - Surfaces of tubes can reach temperatures of several hundred °C and cause serious burns if touched for several minutes after all power is removed. Please review the detailed operating hazards sheet enclosed with each tube, or request a copy from: Varian EIMAC, Power Grid Application Engineering, 301 Industrial Way, San Carlos CA 94070. PULSE DERATING CHART, PULSE MODULATOR OR REGULATOR SERVICE Solid lines represent constant repetition rates. Dashed lines represent constant duties. Do not extrapolate above or to the right of bold lines which set boundaries of maximum anode curp Do not extrapolate above or to the right of bold lines which set boundaries of maximum anode current and minimum repetition rate, respectively. Refer to section ANODE CURRENT on Page 3 for discussion of this chart.