Svetlana 4CX1500A Power Tetrode

The Svetlana 4CX1500A is a high-performance ceramic/metal, forced air-cooled, power tetrode designed for use in Class AB₁ or Class C RF amplifier service. It may also be used for audio frequency modulator, pulse modulator and DC power regulator service. The 4CX1500A filament is precision fabricated in a cylindrical mesh configuration for exceptional mechanical stability and long life.

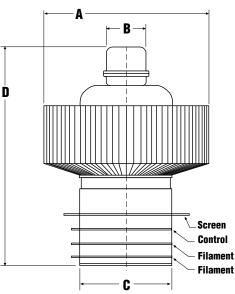
The Svetlana 4CX1500A is manufactured in the Svetlana factory in St. Petersburg, Russia, and is designed to be a direct replacement for the 4CX1500A manufactured in the United States.

Svetlana 4CX1500A

General Characteristics

Electrical					
Filament: Thoriated tungsten					
Voltage				0.25	
Current, at 5.0 volts		38.5 ± 2.0 Å			
Transconductance (Average):					
$I_b = 1.0 \; Adc, \; E_{c2} = 500 \; Vdc$			26,000	μ <i>mhc</i>	
Amplification factor (average):					
Grid to Screen				5.	
Direct interelectrode capacitance (grou	unded cathode):				
Input		78 pF			
Output		10.5 pł			
Feedback				0.25 p	
Frequency of maximum rating:					
CW			1:	50 MH	
Mechanical					
Cooling			Fo	rced a	
Base		I	Ring and bree	chblod	
Recommended air system socket				SK-83	
Recommended (air) chimney		SK-80			
Operating position		Axis vertical, base down or u			
Maximum operating temperature				250°	
Maximum dimensions:					
Length		124.5 mm (4.9 in			
Diameter		85.6 mm (3.37 in			
Net weight			850 gm	(30 oz	
Radio Frequency Linear Amplifier	Class C (CW c	onditions)			
Absolute maximum ratings					
Plate voltage			5000	Vol	
Screen voltage			750	Vol	
Plate dissipation			1500	Wat	
DC plate current			1.0	Amp	
Screen dissipation			75	Wat	
Grid dissipation			25	Wat	
Typical Operation					
Frequencies	**30 MHz	**30 MHz	***220 MHz		
Plate voltage	3000	4000	3000	Vc	
Screen voltage	500	500	500	Va	
Grid voltage	-200	-200	-116	Vc	
Plate current	800	800	1000	тАc	
Screen current	36	37	35	тAc	
Grid current	17	15	0	тAс	
Peak rf grid voltage	240	240		Vol	
Calculated driving power	4.1	3.6	31.5	Wat	
Plate input power	2400	3200	3000	Wat	
Plate dissipation	600	700		Wat	
Plate output power	1800	2500	1500	Wat	
Resonant load impedance	1720	2570		ohm	
*Approximate value **Calculated	***Measured	2070		UII	

Page 2


Power Tetrode

Radio Frequency Linear Amplifier, Grid Driven, Class AB,

	4000 750 1500 1.0 75 25	Volts Volts Watts Amps Watts Watts
	1500 1.0 75	Watts Amps Watts
	1.0 75	Amps Watts
	75	Watts
	-	
	25	Watts
2500	3900	Vdc
600	600	Vdc
-105	-110	Vdc
250	200	mAdc
765	750	mAdc
46	40	mAdc
95	100	Volts
0	0	Watts
820	1070	Watts
1080	1850	Watts
1670	2900	ohms
	600 -105 250 765 46 95 0 820 1080	600 600 -105 -110 250 200 765 750 46 40 95 100 0 0 820 1070 1080 1850

Svetlana 4CX1500A

4CX1500A Outline Drawing

Dimensional Data							
Dim.	Millimeters		Inches				
	Min.	Max.	Min.	Max.			
A	84.7	85.6	3.33	3.37			
В	20.5	20.8	0.81	0.82			
С	47.4	48.3	1.87	1.90			
D	118.7	124.5	4.68	4.9			

Electrical Application

Filament operation The rated filament voltage for the 4CX1500A is 5.0 volts. Filament voltage, as measured at the socket, should be maintained within $\pm 5\%$ of this value to obtain maximum tube life.

Grid operation The rated dissipation of the grid is 25 watts. This is approximately the product of DC grid current and peak positive grid voltage. Operation at bias and drive levels near those listed will insure safe operation.

Screen operation The power dissipated by the screen must not exceed 75 watts. Screen dissipation, in cases where there is no AC applied to the screen, is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipation will depend on RMS screen current and voltage.

Screen dissipation is likely to rise to

excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 75 watts in the event of a circuit failure.

Plate operation The plate dissipation rating of the 4CX1500A is 1500 watts. The tube and associated circuitry should be protected against surge current in the event of an arc with a current limiting resistance of 10 - 25 ohms in series with the lead from the power supply to the plate. The resistor should be capable of withstanding the surge current. It should not be used as a fuse.

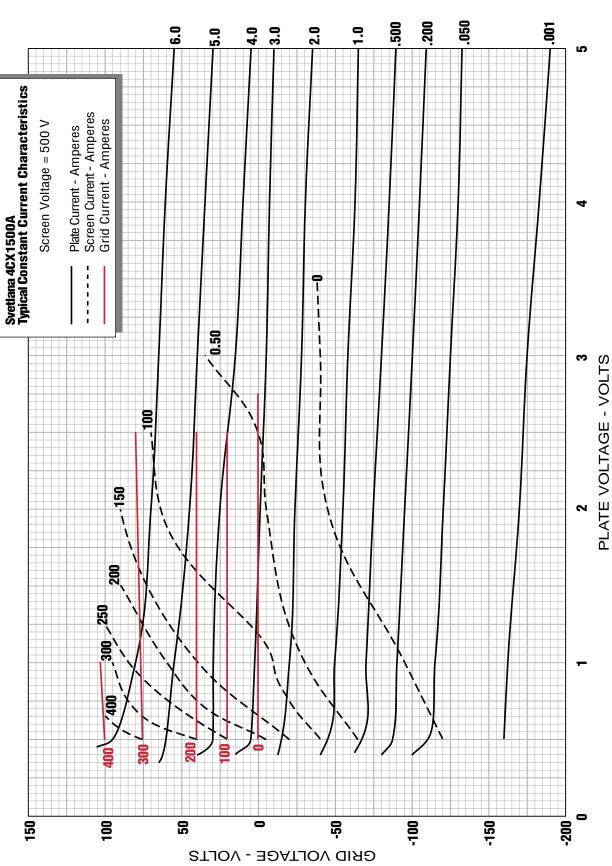
Page 4

Power Tetrode

Mechanical Application

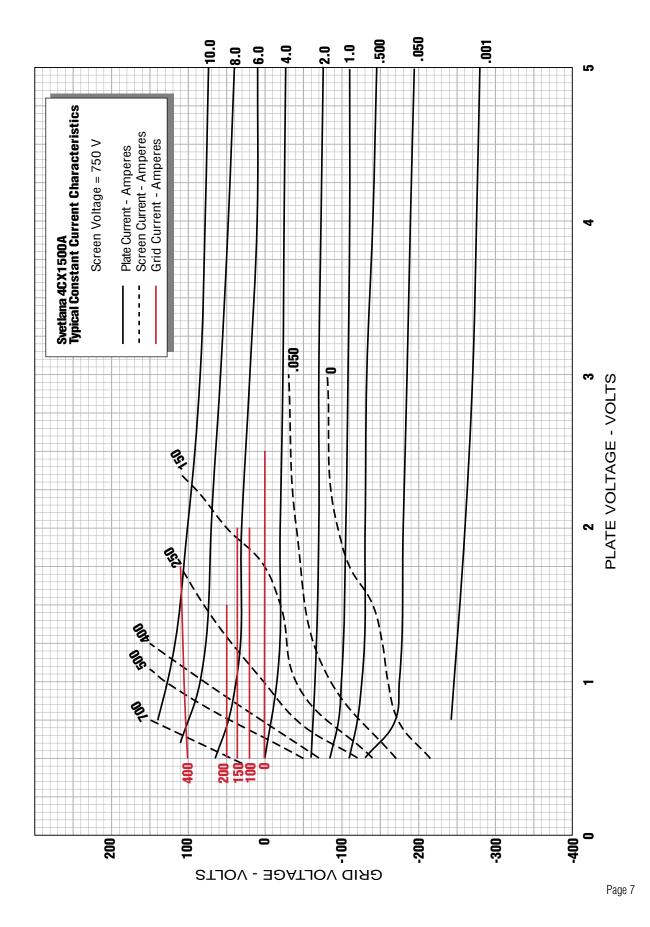
Mounting The 4CX1500A must be operated with its axis vertical. The base of the tube may be down or up at the convenience of the equipment designer.

Socket The Svetlana 4CX1500A is designed for the SK-831 socket and SK-806 chimney. The use of recommended airflow rate through the socket provides effective forced-air cooling of the tube. Air forced into the bottom of the socket passes over the tube terminals through the Air Chimney and exits through the anode cooling fins.


Cooling The maximum temperature rating for the anode core and the metal/ ceramic seals of the 4CX1500A is 250°C. Sufficient forced-air circulation must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic/metal seals below 250°C. Air-flow requirements to maintain seal temperature at 225°C in 50°C ambient air are tabulated below (for operation below 30 MHz).

Minimum Cooling Air-Flow Requirements Sea Level 6,000 feet Plate dissipation | Air flow Pressure drop Air Flow Pressure Drop (CFM) (CFM) (watts) (Inches of water) (Inches of water) 1000 27 33 0.33 0.40 1550 47 0.76 58 .95

Since the power dissipated by the filament represents about 200 watts and since grid plus screen dissipation can, under some conditions, represent another 100 watts, allowance has been made in preparing this tabulation for an additional 300 watts dissipation.


The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducts and filters.

At other altitudes and ambient temperatures the flow rate must be modified to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using rated maximum temperatures as the criteria for satisfactory cooling. Page 6

Svetlana 4CX1500A

Power Tetrode

