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PREFACE

It is the purpose of this book to present the basic theory of antennas with
emphasis on their engineering applications. An effort has been made to
give a unified treatment of antennas from the electromagnetic theory point
of view while keeping in mind the aspects of engineering importance.

The principles given are basic and are applied to antennas for all fre-
quencies. The first four chapters deal with the fundamental theory of
point sources and of the antenna as an aperture. These are followed by
three chapters on linear, loop, and helical antennas in that order. The
theories of the biconical antenna and of the cylindrical antenna are then
discussed. The self and mutual impedance of antennas and the theory of
arrays of linear antennas are taken up in the next chapters, and these are
followed by chapters on reflector-type antennas, slot, horn, complementary,
lens, long wire antennas, and many other types. The final chapter describes
methods and techniques of antenna measurements and includes a discussion
of wave polarization. The Appendix has a number of useful tables for
reference.

Antennas form the dominant theme of the book, and other subjects are
placed in a subordinate position. For example, transmission lines are not
considered per se but are discussed in connection with impedance measure-
ments and matching arrangements for antennas.

The book is an outgrowth of lectures given in recent years by the author
in a course on antennas at The Ohio State University. The material is
suitable for use at about senior or first-year graduate level and is more than
sufficient in amount for a one-semester course, allowing considerable lati-
tude as to the subjects treated. Problem sets are given at the end of each
chapter. As preparation for the course on antennas, it is desirable that
the student have a knowledge of elementary electromagnetic theory, trans-
mission lines and wave guides, and vector analysis.

““Antennas’ has been written to serve not only as a textbook but also, it
is hoped, as a reference book for the practicing engineer and scientist. Asan
aid to those seeking additional information on a particular subject, the
book is well documented with footnote references. Some of the material in
the book is published here for the first time. This refers particularly to
portions of the treatments on point sources and on helical antennas.

v
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vi PREFACE

An aim throughout the book has been to approach a new subject grad«
ually. For example, wherever possible, simple special cases are considered
first, and then with these as background the general case is developed.

The rationalized mks system of units is employed. This system, which
is rapidly coming into almost universal use, has many practical advantages.
A very complete table of units in this system is included in the Appendix.

Although great care has been exercised, some errors in the text or figures
will inevitably occur. Anyone finding them would do me a great service
to call them to my attention so that they can be corrected in subsequent
printings.

I wish to express my appreciation to many of my associates and students
for helpful suggestions. In particular I greatly appreciate the comments
and criticisms of Professor John N. Cooper, of the Department of Physics,
and of Professors Victor H. Rumsey and Sidney Bertram, of the Depart-
ment of Electrical Engineering, at The Ohio State University.

joaN D, Kraus
CoruMBus, OHIO
August, 1950
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CHAPTER 1

INTRODUCTION

1-1. Definitions. A radio antenna' may be defined as the structure
associated with the region of transition between a guided wave and a free-
space wave, Or vice versa.

In connection with this definition it is also useful to consider what is
meant by transmission line and by resonator. A transmisston line 1s a
device for transmitting or guiding radio-frequency energy from one point
to another. Usually it is desirable to transmit the energy with a minimum
of attenuation, heat and radiation losses being as small as possible. This
means that while the energy is being conveyed from one point to another
it is confined within the transmission line or to the vicinity of the line.
Thus, the wave transmitted along the line is one-dimensional in that it
does not spread out into space but follows along the line. From this
general point of view the term transmission line includes not only coaxial
and two-wire transmission lines but also hollow pipes, or wave guides.

A generator connected to an infinite, lossless transmission line produces
a uniform traveling wave along the line. If the line is short-circuited, a
standing wave appears because of interference between the incident and
reflected waves. A standing wave has associated with it local concentra-
tions of energy. If the reflected wave is equal to the incident wave, we
have a pure standing wave. The energy concentrations in such a wave
oscillate from entirely electric to entirely magnetic energy and back twice
per cycle. Such energy behavior is characteristic of a resonant circuit, or
resonator. Although the term resonator, in its most general sense, may
be applied to any device with standing waves, the term is usually reserved
for devices with stored energy concentrations that are large compared
with the inflow or outflow of energy.” When there are no internal con-

IIn its zoological sense, an antenna is the feeler, or organ of touch, of an insect.
According to usage in the United States the plural of “insect antenna’’ is ‘‘antennae,”
but the plural of “radio antenna’ is “antennas.” However, the usage in England makes
no distinction, the plural of both ‘‘insect antenna” and ‘radio antenna’ being
‘“antennae.”

*The ratio of the energy stored to that lost per cycle is proportional to the @, or
sharpness of resonance of the resonator.

1
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2 ANTENNAS [CHaPr. 1

ductors, as in a short-circuited section of wave guide, the device is called
a cavity resonalor.
As illustrations of these definitions, consider Fig. 1-1. A generator or

r
R.E
Generator e 7
=== | |-
A Transmission line B
Traveling wave Trunsifion\ ™
l T region or ~
antenna
Resonator Free-space

Standing wave wave

Fic. 1-1. The antenna is a region of transition between a wave guided by a trans-
mission line and a free-space wave.

transmitter is connected to a two-wire transmission line AB. Assuming
that the line is properly matched, it carries a single outward-traveling
wave and behaves as a pure transmission line. At A there is a short-
circuited section of line connected in parallel. This line has a standing
wave and acts as a resonator or resonant line. Beyond B the transmission
line spreads out gradually until the separation between conductors is many
wavelengths. In this region the wave guided by the transmission line is
radiated into a free-space wave. This region of the line acts as an antenna.

Let the transmission line now be connected to a dipole antenna as in
Fig. 1-2. The dipole acts as an antenna
because it launches a free-space wave.

Dipole

/ -

Generator antenna HoxYever, 1t may also be regarded as a

6‘ section of terminated transmission line
Transmission line (see Sec. 1-2). In addition, it exhibits

many of the characteristics of a reso-

nator, since energy reflected from the

Fie. 1-2. Dipole antenna. ends of the dipole gives rise to a stand-

ing wave on the antenna. Thus, a

single device, in this case the dipole, exhibits simultaneously properties
characteristic of an antenna, a transmission line, and a resonator.

The energy radiated by antennas oscillates at radio frequencies. The
associated free-space waves range in wavelength from thousands of meters
at the long-wave extreme to fractions of a centimeter at the short-wave
extreme. The relation of radio waves to lengths in general is illustrated
by the length chart of Fig. 1-3. Short radio waves and long infrared
waves overlap into a twilight zone that may be regarded as belonging to
both.
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4 ANTENNAS [Cuar. 1

1-2. The Antenna as a Terminated Transmission Line.! According to
this analogy the space around an antenna may be separated into twe
regions: one next to the antenna known as the “antenna region” and one
outside known as the “‘outer region.” The boundary between the two
regions is a sphere whose center is at the middle of the antenna and whose
surface passes across the ends of the antenna. The relation of this
“boundary sphere” to a symmetrical, biconical i-wavelength antenna is
shown in Fig, 14,

Polar axis
or
axis of cones

// \\ Outer
/ \ region
/ Antenna \
/ el
/ region \
Eautorial | ——
plane \ ;
\ /
\ /
E lines /
N /A\Boundory
\\ Ve sphere

Biconical
antenna

Fra. 1-4. Schelkunoff’s biconical antenna with boundary sphere,

The wave caused by a very brief voltage pulse applied to the terminals
travels outward with the electric field, or E lines, forming concentric
circles as shown in Fig. 1-4. The magnetic field, or H lines, are normal
to the F lines and are concentric with the axis of the cones. The field has
no radial component. It is strictly transverse (TEM).? It is said that
these fields belong to the principal, or zero-order, mode.

After a time { = L/c, where L equals the length of one cone and ¢ equals
the velocity of light, the pulse field reaches the boundary sphere. At the
end of the cones there is an abrupt discontinuity, while at the equator
there is none. Hence, there is a large reflection at the end of the cones,
and little energy is radiated in this direction. On the other hand, at the

18. A. Schelkunoff, “Electromagnetic Waves,” D. Van Nostrand Company, Inc.,
New York, 1943, Chap. 11.
! TEM = Transverse Electro Magnetic,
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Sec. 1-2] INTRODUCTION 5

equator the energy continues into the outer region without reflection, and
radiation is a maximum in this direction.

The energy flow around a 3-wavelength cylindrical dipole antenna is
similar. This is indicated by the arrows in Fig. 1-5a. Most of the energy

Half-wave cylindrical
P/ dipole antenna

e T
O

Equatorial /
- — - ——

|—— - —_— — —— > ——>
plane

' Antenna /\Boundary sphere
\\ region N iT // transparent

N /
Quter N s
region S -~

~——Boundary sphere

opague

(a)

(b)
Fic. 1-5. Energy flow near a dipole antenna (a) and radiation field pattern (b).

guided from the terminals close to the antenna is reflected at the ends as
though the boundary sphere were opaque. Energy traveling out in the
equatorial plane, however, continues on into the outer region as though
the boundary sphere were transparent. This explanation accounts in a
qualitative way for the field pattern of the I-wavelength dipole shown in
Fig. 1-56.

The E lines of principal-mode fields must end on conductors and, hence,
cannot exist in free space. The waves which can exist and propagate in
free space are higher mode forms in which the F lines form closed loops.
The principal-mode wave is called a zero-order wave, and higher order
waves are of order 1 and greater. The configuration of the E lines of a
first-order wave in the outer region is illustrated in Fig. 1-6. This wave has
been radiated from a short dipole antenna. The wave started on the
antenna as a principal-mode wave, has passed through the boundary
sphere, and has been transformed.' The field has a radial component

1Some first-order mode is also present inside the antenna boundary sphere as a re-
flccted wave. This and higher order modes may exist both inside and outside of the
boundary sphere in such a way that there is continuity of the fields at the boundary
sphere.
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6 ANTENNAS [CHar. 1

which is largest near the polar axis. At the equatorial plane the radial
component is zero, and the E lines at this plane travel through the boundary
sphere without change. Since the radial components of the field attenuate
more rapidly than the transverse components, the radial field becomes
negligible in comparison with the transverse field at a large distance from
the antenna. Although the field at a large distance from the antenna is
of a higher order type, the measurable components are only of the trans-
verse type. To suggest the fact that the radial field components are weak
and become negligible at large distances, the E lines in the polar region
in Fig. 1-6 are dashed.

Polar
or
antenna
oxis

Dipole
~
N\ Equatorial
plane
Antennc
region

Al
A

F1c. 1-6. Field configuration near dipole antenna.

The distinction between the fields at a large distance and those nearer
to the antenna may be emphasized by subdividing the outer region into
two regions, the one near the antenna called the “near field,”” or Fresnel
region, and the one at a large distance called the “far field,” or Fraunhofer
region. The boundary between the two may be arbitrarily taken to be
at a radius B = 2L*/X as shown in Fig. 1-7. In the Fraunhofer region the
measurable field components are transverse, and the shape of the field
pattern is independent of the radius at which it is taken, while in the
Fresnel region the radial field may be appreciable and the shape of the field
pattern is, in general, a function of the radius.

Returning now to a further consideration of the biconical antenna, this
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Sec. 1-2] INTRODUCTION 7

type is particularly convenient in the transmission-line analogy because
& has a constant characteristic impedance Z, given by

Z, =120 In coti,‘k (1-1)*

where ¢ = one-half of the cone angle (see Fig. 1-4)

To

infinity
Boundary sphefe
of antenna region Far field
or
Fraunhofer
region

Near field
or
Fresnel region

Antenna
region

Fresnel- Fraunhofer
boundary sphere

Fiec. 1-7. Antenna region, Fresnel region, and Fraunhofer region.

// 7 \\\
/ 0
/ \ f—t—
[}
‘ Z, ‘l zl zo
\ !
\ /
\\
“-Boundar
\\~- - spherey (c)
(a) (b)

F1e. 1-8. Biconical antenna with boundary sphere (a) and as a terminated trans-
mission line (b) and (¢).

According to Schelkunoff’s theory the boundary sphere (Fig. 1-8a) may
be replaced by an equivalent load impedance Z, connected between the
ends of the cones by zero impedance leads as suggested in the schematic

* This relation is derived in Chap. 8.
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8 ANTENNAS [CHar. 1

at (b). The effect of the end caps is here neglected. The equivalent
transmission-line circuit is shown in Fig. 1-8¢c. If Z; can be determined,
the input impedance Z; may be obtained by ordinary transmission-line
relations for a line of characteristic impedance Z, and length L terminated
in an impedance Z;. Thus, the antenna has been replaced by an equivalent
transmission line, the antenna acting as a matching section, or trans-
former, between the terminals and space. Based on this analogy, the
general definition of an antenna in Sec. 1-1 may be specialized to the
following: An antenna is a transformer (or matching section) between a
two-terminal input and space or, in the receiving case, is a transformer
between space and the terminals,

The reflected wave in the antenna region gives rise to standing waves
and energy storage in this region. It is as though the boundary sphere
forms a spherical shell resonator that reflects effectively in polar zones
but not at all in the equatorial zone. In a i-wavelength dipole antenna
the energy is stored at one instant of time in the electric field mainly near
the ends of the antenna, while 1 cycle later the energy is stored in the
magnetic field mainly near the center of the antenna, or maximum current
region. If the biconical antenna is made very thin, the reflection at the
ends is increased and the stored energy in the antenna region is relatively
large. However, the refléction at the ends of a biconical antenna of wide
cone angle is less so that the stored energy is smaller. Thus, this antenna,
is less frequency-sensitive' than the thin one and is better suited for wide-
band applications. It also follows that a thick cylindrical dipole is less
frequency-sensitive than a thin dipole.

1-3. Shape-impedance Considerations.” It is possible in many cases to
deduce the qualitative impedance behavior of an antenna from its shape.
This may be illustrated with the aid of Fig. 1-9. At (a) a coaxial trans-
mission line is flared out with the ratio of the conductor diameters D/d
maintained constant. Thus, the characteristic impedance of the line is
constant. If the taper is gradual and D is large where the line ends, this
device radiates with little or no reflection on the line over a frequency range
extending from some lower or cutoff frequency to an indefinitely high
frequency. This is the ultimate in band width. By bending the outer
conductor into a ground plane as at (b) with the inner conductor formed as
shown, the band width is nearly as wide as for the type at (a).> Modifying

1 Q is smaller.

2 Chap. 1 by Andrew Alford, “Very High Frequency Techniques,” by Radio Research
Laboratory Staff, McGraw-Hill Book Company, Inc., New York, 1947.

3 The wide-band characteristics of an antenna of the general appearance of (b) have
-been discussed by N. E. Lindenblad, Antennas and Transmission Lines at the imapire
State Television Station, Communications, 21, 10-14, 24-26, April, 1941.
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Sec. 13 INTRODUCTION B 9

this antenna to the conical type at (¢) or cylindrical type at (d) further
reduces the band width. The band width is still narrower for the thin
stub antenna at (e¢) which represents an extreme to which the modification
may be carried. If the type at (a) is regarded as the basic form, the thin
type at (e) is the most degenerate form.

As we depart more from the basie type, the discontinuity in the line
becomes more abrupt at what eventually becomes the junction of the
ground plane and transmission line. This discontinuity is caused by the
change in the ratio D/d and results in some energy being reflected back

N d/{,' -
WVF vy
(a) (b) ijr(; ‘-l”l('g) ——1 (R)
\(.j) _\(k) \(l)

SR R
(4) —A (m) -ﬂ (m) _l (0)

Fia. 1-9. Derivation of thin wire antennaa from basic broad-band types.

into the line. The discontinuity and reflection at the end of the antenna
also increase for thinner antennas. At some frequency the two reflections
may compensate, but the band width of compensation is narrow. An-
tennas with large and abrupt discontinuities have large reflections and
act as reflectionless transformers or matching-sections only over narrow
frequency bands where the reflections cancel. Antennas with discon-
tinuities that are small and gradual have small reflections and are, in
general, relatively reflectionless transformers over wide frequency bands.

The antenna types at (f), (g), and (h), in Fig. 1-9 are similar to those
shown above them except that the ground plane is modified into a sleeve.
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10 ANTENNAS [Cuar. 1

In a similar way to that discussed for the coaxial types, the thin wire
V antenna at (I) and the thin dipole at (o) may be derived by successive
steps from a balanced two-wire transmission line with a constant char-
acteristic impedance that is gradually flared out as suggested at (¢). The
types tend to be of progressively narrower band width as we proceed from
left to right in the figure.

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



CHAPTER 2

POINT SOURCES

2-1. Introduction. Let us consider an antenna contained within a
volume of radius b as in Fig. 2-1la. Confining our attention only to the
far field of the antenna, we may make observations of the fields along an
observation circle of large radius E. At this distance the measurable
fields are entirely transverse, and the power flow, or Poynting vector, is
entirely radial. It is convenient in many analyses to assume that the
fields of the antenna are everywhere of this type. In fact, we may assume,
by extrapolating inward along the radii of the circle, that the waves

Antenno

(7

Observation
circle

) “a
(a) (b)

Fic. 2-1. Antenna and observation circle.

originate at a fictitious volumeless emitter, or point source, at the center
O of the observation circle. The actual field variation near the antenna,
or ‘“‘near field,” is ignored, and we describe the source of the waves only
in terms of the “far field” it produces. Provided that our observations
are made at a sufficient distance, any antenna, regardless of its size or
complexity, can be represented in this way by a single point source.
Instead of making field measurements around the observation circle with
the antenna fixed, the equivalent effect may be obtained by making the
measurements at a fixed point § on the circle and rotating the antennsa
11
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12 ANTENNAS [CHar. 2

around the center 0. This is usually the more convenient procedure if
the antenna is small.

In Fig. 2-la the center O of the antenna coincides with the center of
the observation circle. If the center of the antenna is dispiaced from
0, even to the extent that O lies outside the antenna as in Fig. 2-15, the
distance d between the two centers has a negligible effect on the field
pattern at the observation circle provided B > d, B > b, and B > A,

¥4

Polar
axts

i3

{rn6,%)
¢
Point source
ot origin 7
@
\an®
x Equa*or‘a\ P
pd
(a)
z
r sin@dg
rdé
Eiement of
dred ds
Y

Fic. 2-2. Spherical coordinates for a point source of radiation in frec space.

However, the phase patterns' will generally differ depending on d. If
= (), the phase shift around the observation circle is usually a minimum.
As d is increased, the observed phase shift becomes larger.
A complete description of the far field of a source requires a knowledge
of the electric field as a function of both space and time. For many
purposes, however, such a complete knowledge is not necessary. It may

1 Phase variation around the observation circle.
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Sec. 2-2] POINT SOURCES 13

be sufficient to specify merely the variation with angle of the power
density' from the antenna. In this case the vector nature of the field is
disregarded, and the radiation is treated as a scalar quantity. This is
done in Sec. 2-2. The vector nature of the field is recognized in the dis-
cussion on the magnitude of the field components in Sec. 2-16. A com-
plete description of an elliptically polarized field, for example, requires
that the variation of the field components be known as a function of time.
This may be conveniently accomplished by specifying one or two phase
angles. Although the cases considered as examples in this chapter ave
hypothetical, they could be approximated by actual antennas.

2-2. Power Patterns. Let a transmitting antenna in free space be repre-
sented by a point-source radiator located at the origin of the coordinates
in Fig. 2-2. The radiated energy streams from the source in radial lines.
The time rate of energy flow per unit area is the Poynling vector, or power
density. The Poynting vector of a point source has only a radial com-
ponent P, with no components in either the ¢ or the ¢ directions (P, =
P, = 0). Thus, the magnitude of the Poynting vector, or power density,
is equal to the radial component (| P| = P,).

A source that radiates energy uniformly in all directions is an 7sotropic
source. TFor such a source the radial component P, of the Poynting vector
is independent of ¢ and ¢. A graph of P, at a constant radius as a func-
tion of either § or ¢ is a Poynting-vector, or power-density, pattern
but is usually called a power pattern. Referring to Fig. 2-2a, consider P,

8=0

%

9 2I1r

(a) (b)

F1a. 2-3. (a) Rectangular power pattern of isotropic source. (b) Polar power pattern
of isotropic source.

as a function of ¢ in the y-z plane (¢ = =+£90°). The power pattern for
the isotropic source is a straight line on a rectangular graph as shown in
Fig. 2-3a or a circle on a polar graph as shown in Fig. 2-3b. In the polar
graph the magnitude of the Poynting vector P, is proportional to the
length of the radius vector. The three-dimensional power pattern for an
isotropic source is a sphere of which the circle of Fig. 2-3b is a cross section.

! Power per unit ares,
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14 ANTENNAS [CHar. 2

Although the isotropic source is convenient in theory, it is not a physi-
cally realizable type. Even the simplest antennas have directional prop-
erties, that is, they radiate more energy in some directions than in others.
In contrast to the isotropic source, they might be called anzsotropic sources.
As an example, the power pattern of such a source is shown in Fig. 2-4aq,

8=0 8a0
! 1

Pre
]
3

(a) (6)
=0 8=0
1
Un"] u
Un
(¢) (d)

T1a. 2-4. Power pattern (a), relative power pattern (b), radiation-intensity pattern (c),
and relative radiation-intensity pattern (d) for the same directional or anisotropic source.
All patterns have the same shape. The relative power and radiation-intensity patterns
(b and d) also have the same magnitude and, hence, are identical.

If P, is expressed in watts per square meter, the graph is an absolute
power pattern. On the other hand, if P, is expressed in terms of its value
in some reference direction, the graph is a relative power pattern. 1t is
customary to take the reference direction as that in which P, is a maxi-
mum. Thus, the radius vector for a relative power pattern is P,/P,,,
where P,, is the maximum value of P,. The maximum value of the
relative power pattern is unity as shown in Fig. 2-4b. A pattern with a
maximum of unity is also called a normalized pattern.

2-3. A Power Theorem' and its Application to an Isotropic Source. If
the Poynting vector is known at all points on a sphere of radius r from a

1'This theorem is a special case of a more general relation for the complex power flow
through any closed surface as given by

W =4[] E®XH): ds (2-1)
where W' is the total complex power flow and E and H* are complex vectors representing
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Skc. 241 POINT SOURCES 15

point, source in a lossless medium, the total power radiated by the source is
the integral over the surface of the sphere of the radial component P, of the
average Poynting vector. Thus,

W:ffp.ds=fp,ds (2-3)

where W = power radiated, watts
P, = radial component of average Poynting vector, watts per
square meter
ds = infinitesimal element of area of sphere (see Fig. 2-2b)
* sin 8 d6 d¢
For an isotropic source P, is independent of 8 and ¢. Thus (2-3) becomes

i

]

W =P. f f ds (2-4)
The integral is equal to the area of the sphere so that
W = PAxr’ (2-5)
or
w
P, = - (2-6)

Equation (2-6) states that the magnitude of the Poynting vector varies
inversely as the square of the distance from a point-source radiator. This
is a statement of the well-known inverse-square law for the variation of
power per unit area as a function of the distance from a point source.
P, is in watts per square meter if W is in watts and r in meters.

2-4, Radiation Intensity. Multiplying the power density P, by the
square of the radius r at which it is measured, we obtain the power per unit
solid angle or radiation intensity U. Thus,

r’P, = U = radiation intensity 2-7

Whereas the power density P, is expressed in watts per square meter, the
radiation intensity U is expressed in watts per unit solid angle (watts per
square radian or steradian).’ The radiation intensity is independent of the
radius.

the electric and magnetic fields, H* being the complex conjugate of H. The average
Poynting vector is
P =Re(E X HY (2-2)
Now the power flow in the far field is entirely real; hence, taking the real part of (2-1)
and substituting (2-2), we obtain the special case of (2-3).
1 Dimensionally, U is simply power since radians are dimensionless. Numerically,
U is equal to P, at unit radius.
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Substituting (2-7) into (2-3), the power theorem assumes the form-

W = fosin vaodg = [[ Uag (2-8)

where dQ = sin 0 d8 d¢ = element of solid angle

Thus, the power theorem may be restated as follows. The total power
radiated 1s given by the inlegral of the radiation inlensity U over a solid
angle of 4. A pattern of U as a function of angle is a radiation-intensity
pattern as shown by Fig. 24c. The maximum radiation intensity U, is
in the direction 8 = 0. A relative radiation-intensity pattern is given
by U/U. and has a maximum value of unity as shown by Fig. 2-44.
Relative power and radiation-intensity patterns are identical. Hence,
for brevity both will often be referred to as power patterns.

Applying (2-8) to an isotropic source gives

W = 4xU, (2-9a)

where U, = power per square radian
Equation (2-9a) may also be expressed as’

W = 41,253 Uj (2-9b)

where Uy = power per square degree

Equations (2-9a) and (2-9b) also apply for a nonisotropic source provided
that U, is the average power per square radian and Uj the average power
per square degree.

2-5. Source with Hemisphere Power Pattern. As further illustrations of
the power theorems, let us apply (2-8) to a number of sources with different
types of assumed power patterns. Consider, for example, a source with a
power or radiation-intensity pattern which is a hemisphere. That is, the
power per unit solid angle, or radiation intensity, U equals a constant
U.. in the upper hemisphere (0 < 8 < 7/2and 0 < ¢ < 2r) and is zero
in the lower hemisphere. This is illustrated by the three-dimensional or
space power pattern of Fig. 2-5a and the two-dimensional power pattern of
Fig. 2-5b. Then the total power radiated is the radiation intensity inte-
grated over a hemisphere, or

2% x/2
W:f UdQ=f0 f Unsin 0d6dé = 20U, (2-10)

Assuming that the total power W radiated by the hemispheric source is
the same as the total power radiated by an isotropic source taken as a
reference, (2-10) and (2-9a) can be equated, yielding,

2xU, = 42U, (2-11)

147 square radians (steradians) = 4z X 57.3? square degrees = 41,253 square degrees.

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



Sec. 2-6] POINT SOURCES 17

or

U _ 2 = directivity (2-12)
)

The ratio of U,. to U, in (2-12) is called the directivity of the hemispheric
source. The directivity of a source is equal to the ratio of its maximum
radiation intensity to its average radiation intensity. Or the directivity
of a source may be stated as the ratio of its maximum radiation intensity
to the radiation intensity of an isotropic source radiating the same total
power.! By (2-12), the directivity of the hemispheric source is 2. That
is to say, the power per unit solid angle U, in one hemisphere from the
hemispheric source is twice the power per unit solid angle U, from an
isotropic source radiating the same total power. This we would expect,
since a power W radiated uniformly over one hemisphere will give twice
the power per unit solid angle as when radiated uniformly over both

8=0 =0

I ] Hemispheric

O

Isotropic
(a) (b) ()

Fre. 2-5. Hemispheric power patterns, (a) and (b), and comparison with isotropic
pattern (c).

¢

hemispheres. The power patterns of a hemispheric source and an isotropic
source are compared in Fig. 2-5¢ for the same power radiated by both.

2-6. Source With Unidirectional Cosine Power Pattern. Iet us con-
sider next a source with a cosine radiation-intensity pattern, that is,

U="U, cos 8 (2-13)

where U,, = maximum radiation intensity

The radiation intensity U has a value only in the upper hemisphere

(0 <6 <7/2and 0 < ¢ < 2r) and is zero in the lower hemisphere. The

radiation intensity is a maximum at # = 0. The pattern is shown in
1 One can also compare the power W’ radiated by the source to the power W' that

must be radiated by an isotropic source to give the same radiation intensity. Then

Uqs = Un, and the directivity is given by D = W /W’. For instance in the ahove case
(Sec. 2-5), W’ = 4xUoand W’ = 2aUn. For Uy = Un, the directivity D = W' /W' = 2,
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18 ANTENNAS [CHaP. 2

Tig. 2-6. The space pattern is a figure of revolution of this circle around
the polar axis.

To find the total power radiated by the cosine source, we apply (2-8)
and integrate only over the upper hemisphere. Thus

2x /2
W=[ [ Un.cososinodods =0, (2-14)
0 0

If the power radiated by the unidirectional cosine source is the same as
for an isotrapic source, then (2-14) and (2-9a) may be set equal, yielding

1|'Um = 41|'Uo
or
N U,
Directivity = = = 4 (2-15)
U,

Thus, the maximum radiation intensity U, of the unidirectional cosine
source (in the direction § = 0) is four times the radiation intensity U,

8=0
Polar
axis

Cosine

Holf-power

points ]
Isotropic

Fig. 2-6. Unidirectional cosine power Fig. 2-7. Power patterns of unidirec-
pattern. tional cosine source compared with iso-

tropic source for same power radiated by
both.

from an isotropic source radiating the same total power. The power
patterns for the two sources are compared in Fig. 2-7 for the same total
power radiated by each.

2-7. Source with Bidirectional Cosine Power Pattern. Let us assume
that the source has a cosine pattern as in the preceding example but that
the radiation intensity has a value in both hemispheres, instead of only in
the upper one. The pattern is then as indicated by Fig. 2-8. 1t follows
that W is twice its value for the unidirectional cosine power pattern, and
hence the directivity is 2 instead of 4.

2-8. Source with Sine (Doughnut) Power Pattern. Consider next a
source having a radiation-intensity pattern given by

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



Skc. 291 POINT SOURCES 19
U=U,siné (2-16)

The pattern is shown in Fig. 2-9. The space pattern is a figure of revolu-
tion of this pattern around the polar axis and has the form of a doughnut.
Applying (2-8), the total power radiated is

2r r
W=, f f sin? 6 d6 dp = =°U. (2-17)
Q Q

If the power radiated by this source is the same as for an isotropic source
taken as reference, we have

U, = 42U, (2-18)
and
o e U 4
Directivity = == = - = 1. 2-19
irectivity U, " x 27 (2-19)
8=0
Polar
oxis
Fic. 2-8. Bidirectional cosine power pat- Fra. 2-9. Sine power pattern.
tern.

2-9. Source with Sine-squared (Doughnut) Power Pattern. Next con-
sider a source with a sine squared radiation-intensity or power pattern.
The radiation-intensity pattern is given by

U=U,sin’8 (2-20)

The power pattern is shown in Fig. 2-10. This type of pattern is of con-
siderable interest because it is the pattern produced by a short dipole
coincident with the polar axis in Fig. 2-10. Applying (2-8), the total power
radiated is

8

W=, f fo'shf 0d0 ds = S0, @21)
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If W is the same as for the 1sotropic source,

U, = 47U,
and
L U. 3 -
Directivity = = = 5 = 1.5 (2-22)
v, 2
8=0
8=0

Fic. 2-10. Sine squared power pattern. Fra. 2-11. Unidirectionai cosine squared

power pattern.

2-10. Source with Unidirectional Cosine Squared Power Pattern, ILet
us consider next the case of a source with a unidirectional cosine squared
radiation-intensity pattern as given by

U= U, cos® 8 (2-23)

with the radiation intensity having a value only in the upper hemisphere.
The pattern is shown in Fig. 2-11. The three-dimensional or space pattern
is a figure of revolution of this pattern around the polar axis and has the
form of a prolate spheroid (football shape). The total power radiated is

2T */2
W= U. f f cos® Osin 6 d dp = ngm (2-24)
0 0
If W is the same as radiated by an isotropic source,
27U, = 47U,
and
. U,
Directivity = =" = 6 (2-25)
U,

Thus, the maximum power per unit solid angle (at 8§ = 0) from the source
with the cosine squared power pattern is six times the power per unit
solid angle from an isotropic source radiating the same power.
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2-11. Source with Unidirectional Cosine® Power Pattern. A more gen-
eral case for a unidirectional radiation-intensity pattern which is sym-
metrical around the polar axis is given by

U= U,cos" ¢ {2-26)

where 7 is any real number. In Fig. 2-12, relative radiation-intensity or

Fi1g. 2-12. Unidirectional cos® § power patterns for various values of n.

power patterns plotted to the same maximum value are shown for the
cases where n = 0, 1, 1, 2, 3, and 4. The case for n = 0 is the same as
the source with the hemispheric power pattern discussed in Sec. 2-5. The
cases for n = 1 and n = 2 were treated in Secs. 2-6 and 2-10. When n = %,

z

14 Polar

12 axis
20l
3
S6f 8
S, - 7

oF

1 1 1 1 R
0 ] 2 3 4 5 6 ¢

=

X

FIG. 2-13. Directivity vs. n for unidirec- Frg. 2-14. Unidirectional source radiat-
tional sources with cos® ¢ power patterns.  ing maximum power in the direction 6 =
90° ¢ = 90° or y axis.

3, and 4, the directivity is 3, 8, and 10, respectively." These calculations
are left to the reader as an exercise. A graph of the directivity of a uni-
directional source as a function of n is presented in Fig. 2-13.

! It may be shown that the directivity of sources with power patterns of the type given

by (2-26) can be reduced to the simple expression, directivity = 2(n + 1). The proof is
left to the reader as an exercise.
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2-12. Source with Unidirectional Power Pattern That Is Not Syme
metrical. All the patterns considered thus far have been symmetrical
around the polar axis. That is, the space pattern could be constructed as
a figure of revolution about the polar axis. Let us now consider a more
general case in which the pattern is unidirectional but is unsymmetrical
around its major axis. In discussing this type of pattern it will be con-
venient to shift the direction of the major axis or direction of maximum
radiation from the polar axis (§ = 0) to a direction in the equatorial plane
as shown in Fig. 2-14 (§ = 90° ¢ = 90°). The 6§ = 90° plane coincides
with the z-y plane and the ¢ = 90° plane with the y-z plane. A rather
general expression for the radiation intensity with its maximum at 6 = 90°
and ¢ = 90° is then given by

U=U,sin"6sin” ¢ (2-27)

where n = any real number

m = any real number
and the radiation intensity U has a value only in the right-hand hemisphere
(Fig. 2-14) (0 € § < 1,0 € ¢ £ 7). When m = n, (2-27) becomes the
equation for a symmetrical power pattern of the same form as considered
in Sec. 11. When m and n are not the same (2-27) represents the general
case in which the pattern has different shapes in the 6 = 90° and ¢ = 90°
planes. The total power radiated in this general case is

W=, [ [ s osin®dods (2-28)
0 0

2-13. General Case of Source with Power Pattern of Any Shape. In the
preceding sections the radiation-intensity or power patterns are all repre-
sented by sine or cosine functions of angle. Some actual antenna patterns
can be so represented. For example, the power pattern of a short dipole
has a sine squared power pattern as discussed in Sec. 2-9. In general the
radiation intensity may be any function of 8 and ¢ as given by

U=U.f6,¢) (2-29)

where U, = a constant
To find the total power radiated, U is substituted into (2-8), that is,

w = [[ U. 16, 9)sin 6 do s (2-30)
If this expression cannot be integrated analytically, W may be obtained by
a graphical integration (see Prob. 2-5), or approximately by selecting

n and m in (2-28) to give a sine-function power pattern which approximates
the actual pattern.
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The mathematical expression for the power pattern may be unknown,
but the pattern may be measurable. In measuring patterns which have a
maximum in the y direction, it is customary to take two patterns, one as
a function of ¢ in the § = 90° plane and the other as a function of 6 in
the ¢ = 90° plane. From these patterns the space pattern may be esti-
mated and W caleulated by graphical integration, or values of n and m
in (2-28) may be selected to give integrable sine functions which approxi-
mate the measured patterns. By assuming that the same power is radiated
by an isotropic source, the directivity may be obtained as in the preceding
sections. Another very simple but approximate method for obtaining the
directivity is discussed on page 25.

2-14. Directivity. The concept of directivity, treated above in some
special cases, may be extended to several more general expressions which
will now be developed.

In Sec. 2-5 directivity was defined as the ratio of U,, to U, where U,,
is the maximum radiation intensity or watts per square radian from the
source under consideration and U, is the radiation intensity from an
isotropie source radiating the same power (or U, is the average radiation
intensity from the source under consideration). Thus,

U,  maximum radiation intensity

D= U, = average radiation intensity (2-31)
where D = directivity
Multiplying numerator and denominator of (2-31) by 4 gives
D= 4wU, _ 4xU, _ 47 (maximum radiation intensity) (2-32)

T 4xU, W total power radiated

Let us now develop a more general expression for the directivity. Let
the radiation-intensity pattern be expressed as in (2-29) by

U=U.jf¢) (2-33)

and its maximum value by
Un = Us f(6, $)mas (2-34)

where U, = a constant
For the special case where _

J(8; $)max = 1 (2-35)
then U, = U, and (2-33) can be written

U=U.f,¢) (2-36)
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The average radiation intensity is

v, = W _ [1U. 0, 9) g

4r 4 (2-37)
where W = total power radiated
dQ = sin 6 df d¢ = element of solid angle
The directivity D is then given by
U, U, (8, ¢)umax 47 f(8, Plmax
D=+"= . = T’ 2-38
U, ~ I U. s, 0 d2~ 1f o, 9da &Y
4
Equation (2-38) can be reexpressed as
4 4
D = T = ——— -
16, 9de " B (289
F(6, ®)imex
where B is defined as the beam area. It is given by’
Jf 16, ¢) da
B= LD @0 2-40
78, D (2-40)
From (2-31) and (2-39)
_Up_4r
D=gt=73 (2-41)
and
4rU, = U,B (2-42)
Since U, = W/4m,
w=U,B (2-43)

where W = total power radiated

Therefore, the beam area B is the solid angle through which all the power
radiated would stream if the power per unit solid angle equaled the mazimum
value U,, over the beam area.

1Note that f(8, ¢)/f(8, ) max i the relative (normalized) total power pattern. Thus,
(2-40) may also be written
f(8,9) .
-] 70, P2 020
The integration may be done analytically or graphically, or it may be done approxi-
mately by (2-44). Graphical integration procedures for a special case are discussed in
Prob. 2-5. If the total far-field pattern is given it should be noted that the relative total

power pattern in (2-40) is equal to the square of the relative total field pattern [see
Eq. (2-58¢)].
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From (2-42)

5 = U, square radians = 41,253 U square degrees  (2-43a)

U. U

Consider the unidirectional power pattern shown in Fig. 2-15. The
pattern is a figure of revolution around the y axis. The included angle ¢
of the corresponding beam area is also shown. If the power per unit solid
angle over the beam area were equal to the maximum value U, of the
directional source, the power through the beam area would equal that
radiated by the source.

From this it is only a step to a very simple z
approximate method of calculating the direc- zi::{

tivity for a single lobed pattern, based on an
estimate of the beam area from the half-power
beam widths of the patterns in two planes at g

right angles. Thus, suppose that 6, is the beam ]
width between half-power points in one plane
and ¢, is the width in a plane at right angles.
Then, approximately

Fig. 2-15. Unidirectional

B > §,¢, (2'44) power pattern in cross sec-
s . . tion with included angle 6" of
Substituting (2-44) in (2-41) gives fhe beam area. The space
o patterns are figures of revolu-

D= (2-45)  tion around the y axis.

0.1

where 8, and ¢, are the half-power beam widths expressed in radians.
Equation (2-45) may also be expressed as

_ 41,253

D
N

(2-46)

where 8] and ¢! are the half-power beam widths in degrees.

1For the special case of a doughnut-type pattern (as in Secs. 2-8 and 2-9) Eq. (2-45)
reduces to D = 4x/2x6, = 2/6;, or D = 114.6/6,°. A somewhat better approximation
for doughnut patterns is given by D = 1/[sin (6,/2)]. When 8, is small the two approxi-
mations are equivalent.

For the special case of a bidirectional pattern with two identical lobes, as in Fig. 2-8,
it is to be noted that the directivity is half that obtained on the basis of a single lobe.

If (2-45) or (2-46) is applied to a unidirectional beam type of pattern with miner
lobes, these lobes are neglected and the calculated directivity is usually too high. To
improve the accuracy, (2-46) may be multiplied by a correction factor. The value
of this factor (usually between 0.6 and 1.0) depends in each case on the characteristies
of the pattern but may be relatively constant for patterns of a certain class of antennas.
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As an illustration let us find the directivity of the source of Sec. 2-6
by this method. This source has a unidirectional cosine power pattern
given by U = U,, cos 6 and an exact value of directivity of 4. The half-
power beam widths are 120°. Thus

Do 41253 _ 41253 _ o

This approximate value is about 35 per cent in error.

As another illustration, consider a source with a unidirectional power
pattern given by U = U,, cos® § which has an exact directivity of 8. The
half-power beam widths are 75.2°, and

41,253
D=

= 7.3

which is about 10 per cent in error.

2-15. Gain. The definition of directivity in the preceding section is
based entirely on the shape of the radiated power pattern. The power
input and antenna efficiency are not involved. A quantity called gain
will now be introduced which does involve the antenna efficiency. The
gain' @ of an antenna is defined as

maximum radiation intensity
maximum radiation intensity from a
reference antenna with same power input

G="

(2-47)

Any type of antenna may be taken as the reference. Often the reference
is a linear i-wavelength antenna. Gain includes the effect of losses both
in the antenna under consideration (subject antenna) and in the reference
antenna.

It will be convenient in some of the following discussion to assume that
the reference antenna is an isotropic source of 100 per cent efficiency.
The gain so defined for the subject antenna is called the gain with respect
to an isotropic source and is designated ;. Thus,

maximum radiation intensity from subject antenna
radiation intensity from (lossless) isotropic
source with same power input

Gy = (2-48)

Let the maximum radiation intensity from the subject antenna be U’.
Let this be related to the value of the maximum radiation intensity U,

1 The gain G as here defined is sometimes called power gain. This quantity is equal
to the square of the gain in field intensity G;. Thus, if E, is the maximum electric field
intensity from the antenna at a large distance R and E), is the maximum electric field
intensity from the reference antenna with the same power input at the same distance R,
then the power gain @ is given by G = (E,/E,)* = G2
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for a 100 per cent efficient subject antenna by a radiation effictency faclor k.
Thus,
U, = kU, (2-49)

where 0 < £k <1
Therefore, (2-48) may be written

U, kU,

Go = U, U,

where U, is the radiation intensity from a lossless isotropic source with
the same power input. If W is the power input, U, = W/4x. But the

ratio U,./U, is by (2-31) the directivity D so that (2-50) becomes

(2-50)

Thus, the gain of an antenna over a lossless isotropic source equals the
directivity if the antenna is 100 per cent efficient (¢ = 1) but is less than
the directivity if any losses are present in the antenna (¢ < 1).

The directivity D and gain G, imply the maximum values for an antenna.
The directivity or gain in a direction for which the radiation intensity U
is not a maximum may be designated by specifying the angle ¢ at which
it is measured or, in general, by the symbol D(6, ¢) or Go(8, ¢). That is,

U

D(8, ¢) = i (2-52a)
and
U
Gy(8, ¢) = AL (2-52b)

where U = radiation intensity in the direction (8, ¢)
U, = maximum radiation intensity
Both directivity and gain may be expressed as a decibel ratio by taking
10 times the logarithm to the base 10. That is,
' Db directivity = 10 log,, D (2-53a)
Db gain = 10 log,, G (2-53b)

Since the power gain @ is equal to the square of the gatn in field intensity
G, we also have

Db gain = 20 loglo G; (2-530)

Thus, db gain is the same, whether based on power gain or gain in field
intensity.

2-16. Field Patterns. The discussion in the preceding sections of this
chapter has been based on considerations of power. This has afforded a
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simplicity of analysis, since the power flow from a point source has only a
radial component which can be considered as a scalar quantity. To
describe the field of a point source more completely, let us consider the
electric field intensity,’ or E vector of the field, which is usually called
simply the electric field, or E.

Since the Poynting vector around a point source is everywhere radial,
it follows that the electric field is entirely transverse, having only £, and
E, components. The relation of the radial component P, of the Poynting
vector and the electric field compo-
nents is illustrated by the spherical
coordinate diagram of Fig. 2-16.
The conditions characterizing the
far field are then:

Z|polar
axis

1. Poynting vector radial (P,
, component only)
E, 2. Electric field transverse (E,
and E, components only)

Eg

4 Q\a“e The Poynting vector and the elec-
a\

uatort
X Eq
Fic. 2-16. Relation of the Poynting vec-
tor and the electric field components of the
far field.

tric field at a point of the far field are
related in the same manner as they
are in a plane wave, since, if r is
sufficiently large, a small section of
the spherical wave front may be con-
sidered as a plane.

The relation between the average Poynting vector and the electric field

at a point of the far field is

!

where Z, = intrinsic impedance of free space* and

1 B
Po=5y (2-54)
E = ~E; +E (2-55)

where £ = total electric field intensity

SIS
I

= amplitude of § component
amplitude of ¢ component

The field may be elliptically, linearly, or circularly polarized.

1 We could equally well use the magnetic field intensity, or H vector. However, in
the far field the magnitude of the magnetic field is related to the electric field by the

intrinsic impedance Z of the medium (H = E/Z).

The two fields at each point are in

time phase and in space quadrature. Since the magnetic field can be obtained from the
electric, we shall, for simplicity, consider only the electric field patterns.

* Z, i8 a pure resistance (= 377 ohms).
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A pattern showing the variation of the electric field intensity at a
constant radius r as a function of angle (6, ¢) is called a field pattern. In
presenting information concerning the far field of an antenna, it is cus-
tomary to give the field patterns for the two components, E, and E,, of
the electric field since the total electric field E can be obtained from the
components by (2-55), but the components cannot be obtained from a
knowledge of only E.

When the field intensity is expressed in volts per meter, it is an absolute
field pattern.' On the other hand, if the field intensity is expressed in
units relative to its value in some reference direction, it is a relative field
patiern. The reference direction is usually taken in the direction of
maximum field intensity. The relative pattern of the I, component is
then given by

£,

T (2-56)
and the relative pattern of the E, component is given by

£,

E,. (2-57)

where F,,, = maximum value of E,
I, = maximum value of E,

The magnitudes of both the electric field components, E,; and E,, of the
far field vary inversely as the distance from the source. However, they
may be different functions, ', and F,, of the angular coordinates, 8 and
¢. Thus, in general,

By = > Fy(6, ) (2-5%0)

Ey = }Fz(o, ) (2-58b)

Since P,,, = E./2Z, where E,, is the maximum value of E, it follows on
dividing this into (2-54) that the relative total power pattern is equal to the
square of the relative total field pattern. Thus,

P, U E\?
P.-U." (17) (2-58¢)

Example 1. Consider first the case of an antenna whose far field has only an
E, component in the equatorial plane, the E; component being zero in this plane.

‘ The magnitude depends on the radius, varving inversely as the distance, (E « 1/r).
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Suppose that the relative equatorial-plane pattern of the E, component (that is, K,
as a function of ¢ for § = 90°) is given by

o+ = cos¢ (2-59a)

This pattern is illustrated by Fig. 2-17a." The length of the radius vector in the
diagram is proportional to E,. A pattern of this form could be produced by a short
dipole coincident with the y axis,

1 1
. Holf-power
707 points
‘/\> 5
Y Y
X X
a b
alo (@ slo ®

F1a. 2-17. Relative E; pattern of Example 1 at (a) with relative power pattern at (b).

The relative power pattern in the equatorial plane is equal to the square of the
relative field pattern. Thus

Po_ U _ (LY
P T B, (2-59b)
and substituting (2-59a) into (2-59b) we have
T = cos’ ¢

P,

This pattern is illustrated in Fig. 2-17b.
Example 2. Consider next the case of an antenna with a far field that has only
an E; component in the equatorial plane, the E, component being zero in this plane.

1 Another method of presenting the variation of field with respect to ¢ and 8 is by con-
tours of constant absolute or relative field intensity on a spherical surface, or the
contours may be mapped on a flat projection of the spherical surface.

A graph showing contours of constant field intensity is commonly used to show the
coverage of broadcasting stations in a horizontal plane. Here the eontours are functions
of one angle ¢ and of distance r.
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Assume that the relative equatorial-plane pattern of the E; component (that is, E,
as a function of ¢ for @ = 90°) for this antenna is given by

Eo _ .
B, sin ¢ (2-60)

This pattern is illustrated by Fig, 2-18a and could be produced by & small loop
antenna, the axis of the loop coincident with the = axis.

¢’0 =
X () W

Fic. 2-18. TRelative E; pattern of Txample 2 at (a) with relative power pattern at (b).

The relative power pattern in the equatorial plane is

Pr; = gin’ ¢
This pattern is shown by Fig. 2-18b.

Example 3. Let us consider finally an antenna whose far field has both E,
and E, components in the equatorial plane (6§ = 90°). Suppose that this antenna is
a composite of the two antennas we have just considered in Examples 1 and 2 and
that equal power is radiated by each antenna. It then follows that at a radius r
from the composite antenna, Ey,, = E,.. The individual patterns for the Ey and E,
components as given by (2-60) and (2-59a¢) may then be shown to the same scale by
one diagram as in Fig. 2-19a. The relative pattern of the total field E is

EEL = +/sin®¢ + cos’¢p = 1
which is a circle as indicated by the dashed line in Fig. 2-19a.

Tor this antenna, we may speak of two types of power patterns.  One type shows
the power variation for one component of the electric field. Thus, the power in the
E,y component of the field is as shown by Fig. 2-18b and the power in the ¥, compo-
nent by Fig. 2-17b. The second type of power pattern shows the variation of the

total power. This is proportional to the square of the total electric field intensity.
Accordingly, the relative total power pattern for the composite antenna is

P _ (_E_) _

Prm Em -
The relative pattern in the equatorial plane for the total power is, therefore, a circle
of radius unity as illustrated by Fig. 2-195.
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We note in Fig. 2-19a that at ¢ = 45° the magnitudes of the two field components,
E, and E,, are equal. Depending on the time phase between E, and E,, the field in
this direction could be plane, elliptically or circularly polarized. To determine the
type of polarization requires that the phase angle between K, and I, be known.
This is discussed in the next section.

| \ |
- @ =45°

(a) ¢)=(o (b) ¢§o

Fre. 2-19. (a) Relative patterns of Ey and E, components of the electric field and the
total field E for antenna of Example 3. (b) Relative total power pattern.

2-17. Phase Patterns. Assuming that the field varies harmonically
with time and that the frequency is known, the far field in all directions
from a source may be completely specified by a knowledge of the following
four quantities:'

1. Amplitude of the polar component ¥, of the electric field as a function
of r, 6, and ¢

2. Amplitude of the azimuthal component £, of the electric field as a
function of r, 8, and ¢

3. Phase lag é of E, behind E, as a function of 4 and ¢

4. Phase lag 7 of a field component behind its value at a reference point
as a function of r, 6, and ¢

Since we regard the field of a point source as a far field everywhere, the
above four quantities can be considered as those required for a complete
knowledge of the field of a point source.

1 In general, for the near or far field, six quantities are required. These are E;, E,,
5, and 7 each as a function of r, 6, ¢ and in addition the amplitude of the radial compo-
nent of the electric field E, and its phase lag behind Ejy both as a function of r, 6, ¢.
Since E, = 0 in the far field, only four quantities are needed to describe completelv the
field in the Fraunhofer region.
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If the amplitudes of the field components are known at a particular
radius, from a point source in free space, their amplitude at all distances
is known from the inverse-distance law. Thus, it is usually sufficient to
specify E, and E, as a function only of § and ¢ as, for example, by a set
of field patterns.

As shown in the preceding sections, the amplitudes of the field com-
ponents give us directly or indirectly a knowledge of the peak and effective
values of the total field and Poynting vector. However, if both field
components have a value, the polarization is indeterminate without a
knowledge of the phase angle & between the field components. Focusing
our attention on one field component, the phase angle 5 with respect to
the phase at some reference point is a function of the radius and may also
be a function of 6 and ¢. A knowledge of 7 as a function of 6 and ¢ is
essential when the fields of two or more point sources are to be added.

We now proceed to a discussion of the phase angles, § and », and of
phase patterns for showing their variation. TLet us consider three examples.

Example 1. Consider first a point source that radiates uniformly in the equa-
torial plane and has only an E; component of the electric field. Then at a distance r
from the source, the instantaneous field X, in the equatorial plane is

28, .
E,, = —\/ ® sin (wt — Br) (2-61)
T
where I/, = rms value of ¢ component of electric field intensity at unit radius from
the source
w = 2xf
= 2z/\

The relation given by (2-61) is the equation for the field of a spherical wave
traveling radially outward from the source. The equation gives the instantaneous
value of the field as a function of time and distance. The amplitude or peak value
of the field is \/§E’¢/ r. The amplitude is independent of space angle (6 and ¢)
but varies inversely with the distance r. The variation of the instantaneous field
with distance for this example is illustrated by the upper graph in Fig. 2-20 in which
the amplitude is taken as unity at a distance 7. When r = 0, the variation of the
instantaneous field varies as sin wt. It is often convenient to take this variation as a
reference for the phase, designating it as the phase of the generator or source. The
fact that the amplitude at r = 0 is infinite-need not detract from using the phase at
r = 0 as a reference. The phase at a distance r is then retarded behind that at the
source by the angle 8r. A phase retardation or lag of E, with respect to a reference
point will, in general, be designated as . In the present case the reference point is
the source;' hence

9 .
n= fr= ——;1 radians (2-62)

+1f the phase is referred vo some point at a distance r; from the source, then (2-61)
pecomes E,. = (\/2E,/r) sin {wt — Bd). whered = r — r,.
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Thus, the phase lag 5 increases linearly with the distance » from the source. This
is illustrated by the chart of phase lag vs. distance in Fig. 2-20.

The phase lag 5 in this example is assumed to be independent of ¢. To demnon-
strate experimentally that # depends on r but is independent of ¢, the arrangement
shown at the lower left in Iig. 2-20 could be used. The outputs of two probes or
small antennas are combined in a receiver. With both probes at or very near the
same point, the receiver output is reduced to a minimum by adjusting the length
of one of the probe cables. The voltages from the probes at the receiver are then in

Minima or
constant phase
contours

+| O~
instantaneous
amplitude

Paint
source

log 180
n o

s Z Z.
phose 360°f——rpisf—ryf—
W 74
7

Receiver

Output
indicator

Fre. 2-20. Tllustration for Example 1. Phase of E, of point source radiating uni-
formly in ¢ plane is a function of r but is independent of ¢. Phase lag 7 increases
linearly with distance r.

phase opposition. With one probe fixed in position, the other is then moved in such
a way as to maintain a minimum output. The locus of points for minimum output
constitutes a contour of constant phase. For the point source under consideration,
each contour is a circle of constant radius with a separation of 1 wavelength between
contours. The radius of the contours is then given by r, 4= n\, where r, is the radius
to the reference probe, and n is any integer.

Example 2. Consider next the case of a point source that has only an Ej
component and that radiates nonuniformly in the equatorial or ¢ plane. The
mstantaneous value in the equatorial plane is
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B, = J—%-Em cos ¢ 8in (wt — B (2-63)

where E,, = rms value of E; component at unit radius in the direction of maximum
field intensity

Let a point at unit radius and in the direction ¢ = 0 be taken as the reference for
phase. Then at this radius,

E¢.' = ‘\/§E¢m Cco8 ¢ sin wt (2‘64)

Setting sin wt = 1, the relative field pattern of the E; component as a function of ¢

js, therefore,
E, = cos¢ (2-65)

as illustrated in Fig. 2-21a. A pattern of this type could be obtained by a short
dipole coincident with the y axis at the origin. The phase lag 7 as a function of ¢

Peigo®

=2270° =90°

(5

L :
o* 90° 180°  270° 360° 90° 180°

Fi1a. 2-21. Tllustration for Example 2. Field pattern is shown at (a), the phase pattern
in rectangular coordinates at (b), and in polar coordinates at (c).

is a step function as shown in the rectangular graph of Fig. 2-21b and in the polar
graph of Fig. 2-21¢c. The variation shown is at a constant radius with the phase in
the direction¢ = O as a reference. We note that » has an apparent discontinuity of
180° as ¢ passes through 90° and 270° since at these angles cos ¢ changes sign while
passing through zere magnitude. The phase angle 9 is accordingly a continuous,
linear function of r but a discontinuous, step function of ¢. To demonstrate this
variation experimentally, the two-probe arrangement described in Example 1 may
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be used. In practice, attenuators, not shown, would be desirable in the probe leads
to equalize the probe outputs. Referring to Fig. 2-22, if both fixed and movable
probes ere in the lower quadrants (1 and 4), a set of constant or equiphase circles is
'obtained with a radial separation of 1 wavelength. If one probe is fixed in quadrant
1 while the upper quadrants are explored with the movable probe, a set of equiphase
circles 1s obtained which have a radial separation of 1 wavelength hut are displaces’
radiaily from the set in the lower quadrants by % wavelength. Thus, the consta.u.
phase contours have an apparent discontinuity at the y axis, as shown in Fig. 2-22.

Quadrant 3 Quadront 2

Probes)\

Quadrant 4 Quodront 1

Qutput
X indicator
¢=0

F1a. 2-22. Constant phase contours for source of Example 2.

The phase of the field of any linear antenna coincident with the y axis exhibits this
discontinuity at the y axis.!

Example 3. Consider lastly a point source which radiates a field with both
E, and E, components in the equatorial plane, the instantaneous values being givent

by
2E;m
By = -\—/7—1— sin ¢ sin (wt — Br) (2-66)
and
2,
Egi = _\Z_r_i— cos ¢ sin (wt ~ Br — 7—5) (2-67)

Referring to Fig. 2-23, a field of the form of the E, component in the equatorial
plane could be produced by a small loop at the origin oriented parallel to the y-z
plane. A field of the form of the E, component in the equatorial plane could be
produced by a short dipole at the origin coincident with the y axis. Let a point at

17Tt is to be noted that this phase change is actually a characteristic of the method of
measurement, since by a second method no phase change may be observed between the
upper and lower hemispheres. In the second method the probe is moved from the upper
to the lower hemisphere along a circular path in the z-z plane at a constant radius from
the source. However, for a linear antenna the second method is triviai since it is
equivalent to rotating the antenna on its own axis with the probe at a fixed position.
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unit radius in the first quadrant be taken as the reference for phase. Assuming that

ifoop and dipole radiate equal power,

Eﬂm

Then at unit radius the relative pat-
terns as a function of ¢ and ¢ are given by

Ey; = sin ¢ sin wt (2-69)
and
. 7\
E;, = cos ¢ sin \wt — 5/‘
= —cos ¢ cos wt (2-70)

The relative field patterns in the
equatorial plane are shown in Fig. 2-23,
The field components are in phase quad-
rature (6 = m/2). In quadrants1and 3,
E, lags E, by 90°, while in quadrants 2
and 4, E, leads E; by 90°. The phase
vatterns in the equatorial plane for E,
and Ey are shown in polar form by Fig.
%24andinrectangularformbyFig.2-25a.

E'W (2-68)
Quadrant 3 Quadrant 2
Eg lags 90° Eg4 leads 90°

Quodront 4
Eg leads 90°

Quadrant 1
Eg lags SO°

X
#=0
Fie. 2-23. Field patterns for source of
Example 3.

Since E;, E,, and 6 are known, the polarization ellipses may be determined.

¢

)

Eg

¢ =270°
E

E

//\

<

ke =50°

“)

180° 2
Lag ang!

=0*

Fia. 2-24. Phase lag as a function of ¢ for field components of source of Example 3,
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These polarization ellipses (see Secs. 15-10 to 15-17) for different directions
the equatorial plane are shown in Fig. 2-25b. It is to be noted that in quadrants
1 and 3, where E, lags E;, the E vector rotates counterclockwise, while in quadrants
2 and 4, where E, leads E,, the rotation is clockwise.

At four angles the polarization is circular, E rotating counterclockwise at ¢ = 45°
and 225° and rotating clockwise at ¢ = 135° and 315°. The polarization is linear at
four angles, being horizentally polarized at 0° and 180° and vertically polarized at
90° and 270°. At all other angles the polarization is elliptical.

360°

. Phase lag

n €y
_270°
180° |- Eg 1Es
90' E y—,—>
o° I 1 I l ) ! ! !
o° 45° 90° 135° ¢ 180° 225° 270° 325° 360~
(a)

—oD01000—0d01 00—
0° 5° 45° 615° 9¢0° 135° 180° 225° 210° 315 360°
¢

(b)

Fia. 2-25. Phase patterns in rectangular coordinates for source of Example 3 at
(a) with polarization ellipses for every 22.5° interval of ¢ at (b).

2-18. General Equation for the Field of a Point Source. Both compo-
nents of the far field of a point source in free space vary inversely with
the distance. Therefore, in general, the two electric field components may
be expressed as

_ B

By, = == 16, ¢) (2-11)
and
E,,
E, = =2 1,6, ¢) (2-72)

where F,,, = rms value of E, component at unit radius in the direction of

maximum field

rms value of E, component at unit radius in the direction of

maximum field

f» and f; are, in general, different functions of 8 and ¢ but of maxi-
mum value unity

E¢m
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The instantaneous values of the field components vary harmonically
with time and are given by (2-71) and (2-72) multiplied, in general, by
different functions of the time. Thus, for the instantaneous field com-
ponents

Boo = Y2 15, 4y sin (0t — 9 (273)

and

E,. = \/ZE“' f2(8, ¢) sin (wt — 9 — 3) 2-79

where n = B(r — 1) + f:(6, ¢)

& = f.(6,¢)

r = radius to field point (r, 6, ¢)

r, = radius of point to which phase is referred

fs and f, are, in general, different functions of 6 and ¢

The instantaneous value of the total electric field at a point (r, 6, ¢)

due to a point source is the vector sum of the instantaneous values of the
two components. That is,

Ea = aaE“ + %Eﬁ (2-75)

where a, = unit vector in 6 direction

a, = unit vector in ¢ direction
Substituting (2-73) and (2-74) into (2-75) then gives a general equation
for the electric field of a point source at any point (r, 8, ¢) as follows:

E.=a '\/“—'3&1 fl(o, ) sin (wf — 7)

\/ Ewn

+ a, f(6, ¢) sin (wt — 7 — 8 (2-76)
In this equation the instantaneous total electric field vector E, is a function
of both space and time, thus

E, = f(T, 0, ¢, t) (2'77)

The far field is entirely specified by (2-76). When f, and f, are complicated
expressions, it is often convenient to describe E; by means of graphs for
the four quantities By, E,, 5, and 8§, as has been discussed. It is assumed
that the field varies harmonically with time and that the frequency is
known.
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PROBLEMS

2-1. a. Calculate the exact directivity for three unidirectional sources having the
following power patterns:

U= U,sin 0sin’¢
U= U,sin 6 sin®¢
U= U,sin® sin’¢
U has a value only for 0 < 0 < 7 and 0 € ¢ < 7 and is zero else-
where.
b. Calculate the approximate directivity from the produet of the half-
power beam widths for each of the sources.
¢. Tabulate the results for comparison.

2-2. Show that the directivity for a source with a unidirectional power pattern
given by U = U, cos” § can be expressed as D = 2(n+ 1). U has a value only for
0< 0L 71/2and 0 < ¢ < 27 and is zero elsewhere.

2-3. The earth receives from the sun 2.2 gram calories/min/em?®,

a. What is the corresponding Poynting vector in watts per square meter?

b. What is the power output of the sun, assuming that it is an isotropic
source?

¢. What is the rms field intensity at the earth due to the sun’s radiation,
assuming all the sun’s energy is at a single frequency?

Note: 1 watt = 14.3 gm cal/min.
Distance earth to sun = 149 X 10° kilometers.

2-4. Prove the following theorem: If the minor lobes of a radiation pattern re-
main constant as the beam width of the main lobe approaches zero, then the direc-
tivity of the antenna approaches a constant value as the beam width of the main
lobe approaches zero.

2-b. a. Calculate by graphical integration the directivity of a source with a uni-
directional power pattern given by U = cos §. Compare this directivity
value with the exact value. U has a value only for 0 < 6 < #/2 and
0 < ¢ < 27 and is zero elsewhere.

b. Repeat for a unidirectional power pattern given by U = cos” 8.
¢. Repeat for a unidirectional power pattern given by U = cos® 6.

Note that the directivity in each case is given by D = 2/(f§/* U sin 6 df). To
evaluate the integral graphically lay off 0 to w/2 (0° to 90°) as abscissa and 0 to 1
as ordinate on rectangular graph paper. The value of the integral is then the ratio
of the area a under the curve U sin 6 to the total area A of the rectangle (0 to w/2
by 0 to 1), both in the same arbitrary units, multiplied by x/2. That is, [§2 U
sin § df = (a/A)(w/2). The evaluation of the area ¢ may be done by square
counting or by dividing the area into vertical strips and taking the area of any strip
as the product of its base width and average ordinate.
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CHAPTER 3
THE ANTENNA AS AN APERTURE

3-1. Introduction. In this chapter an antenna will be regarded as pos-
sessing an aperture or equivalent area over which it extracts energy from
a passing radio wave.!

The concept of aperture is most simply introduced by considering a
receiving antenna. Suppose that the receiving antenna is an electro-
magnetic horn immersed in the field of a plane wave as suggested in
Fig. 3-1. Let the Poynting vector, or power density, of the plane wave

“Direction of propugoi;ion
. of plane wuv'e

F16. 3-1. Plane wave incident on electromagnetic horn of mouth aperture A.

be P watts/meter’ and the area of the mouth of the horn be A meters’.
If the horn were able to extract all the power from the wave over its entire
area A, then the total power W absorbed from the wave would be

W = PA watts (3-1)

tJ. C. Slater, “Microwave Transmission,” McGraw-Hill Book Company, Inc.,
New York, 1942, p. 235.

Chap. 10 by Kraus, Clark, Barkofsky, and Stavis, “Very High Frequency Tech-
niques,” by Radio Research Laboratory staff, McGraw-Hill Book Company, Inc.,
New York, 1947, pp. 225-228.

H. T. Friis, A Note on s Simple Transmission Formula, Proc. I .R.E., 34, 254-256,
May, 1946.

f1
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Thus, the electromagnetic horn may be regarded as an aperture, the
total power it extracts from a passing wave being proportional to the
aperture or area of its mouth.*

It will be convenient to distinguish between several types of apertures,
namely, effective aperture, scattering aperture, loss aperture, collecting
aperture, and physical aperture. These different types of apertures are
defined and discussed in the following sections.

In the following discussion in this chapter, it is assumed, unless other-
wise stated, that the antenna has the same polarization as the incident
wave and is oriented for maximum response.

3-2. Effective Aperture. Consider any type of collector or receiving
antenna which is situated in the field of a passing electromagnetic wave
as suggested in Fig. 3-2a. The antenna collects power from the wave and

\

Antenna

]Nl

Terminoting
T]impedunce incident
plane wave

Fi16. 3-2. Schematic diagram of antenna terminated in impedance Z r with plane wave
incident on antenna (a) and equivalent circuit (b).

delivers it to the terminating or load impedance Z: connected to its
terminals. The Poynting vector, or power density of the wave, is P watts/
meter’. Referring to the equivalent circuit of Fig. 3-2b, the antenna
may be replaced by an equivalent or Thévenin generator having an
equivalent voltage V and internal or equivalent antenna impedance Z,.
The voltage V is induced by the passing wave and produces a current I
through the terminating impedance Z, given by

|4

AR &2

where I and V are rms or effective values.

* Actual electromagnetic horns have effective apertures which are smaller than the
physical area of the mouth, being usually 0.5 to 0.7 of this value.
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In general, the antenna and terminating impedances are complex, thus
Zr =Ry + jXr (3-3)

and
Z, = R, + jX,4 (3-4)

The antenna resistance may be divided into two parts, a radiation resist-
ance R, and a loss resistance E;, that is,

R.=R.+ R, (3-5)
Let the power delivered by the antenna to the terminating impedance
be W. Then
W = I’'R. (3-6)
From (3-2), (3-3), and (3-4) the current magnitude
I= v (3-7

VR, + R, + R0 + (X4 + X0)°
Substituting (3-7) into (3-6) gives
_ V'R,
(R. + R + Rp)* + (X4 + X0’

The ratio of the power W in the lerminating impedance to the power density
of the incident wave will be defined as the effective aperture A,.

Thus,

w

(3-8)

Effective aperture = :;—g = 4, (3-9)
If W is in watts and P in watts per square meter, then A, is in square
meters. If P is in watts per square wavelength, then A, is in square
wavelengths, which is often a convenient unit of measurement for apertures.

Substituting (3-8) into (3-9) gives the effective aperture in terms of the
incident power density, the induced voltage, and the antenna and termi-
nating impedances, that is,

_ V'R
P(R. + R. + R»)’ + (X4 + X»]
Unless otherwise specified, it is assumed that V is the induced voltage

when the antenna is oriented for maximum response and the incident
wave has the same polarization as the antenna. As shown by (3-10), the

A, (3-10)
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effective aperture takes into account antenna losses, as given by R;, and
any mismatch between the antenna and its terminating impedance.’

Let us now consider the special case where the terminating impedance is
the complex conjugate of the antenna impedance so that maximum power
is transferred. It will also be assumed that the antenna losses are zero
(Rr = 0 and therefore B, = R,). Thus,

XT = —XA (3-12)

and
R, = R, (3-13)

Introducing the conditions for maximum power transfer as given by (3-12)
and (3-13) into (3-8) results in the largest possible power W’ in the termi-
nating impedance as follows:

VR V? V?
’ = ——m= e =
V=R, T iR, iR (819
The power W’ is delivered to the terminating impedance under conditions
of maximum power transfer and zero antenna losses.

The ratio of this power to the power density of the incident wave is

114 is sometimes convenient to express the induced voltage V in terms of the incident
field intensity E and an effective height h of the antenna. That is

V = hE

where V is in volts if A is in meters and E in volts per meter (or A may be in wavelengths
and E in volts per wavelength). The effective height and the effective aperture are
related as may be shown in the following way. In (3-10) P = E?/Z, where Z is the in-
trinsic impedance of the medium (Z = +/;/¢). Thus, on solving (3-10) for V we have,

_— \/A,[(R, + Ry + R+ X+ Xn)l
RrZ

80 that the effective height is given by

- \/A,[(Rr + Ry + Br)* + (X4 + Xp)Y
RyZ

Under the conditions considered in the next paragraphs of the text for the maximum
effective aperture A.n,, the expression for the effective height reduces to

AR hZ
h = Lemlir A = _
2 \/ 7 or iR, 3-11)

As an example, for a thin linear §-wavelength antenna 4., = 0.13 square wavelength
and B, = 73 ohms. Now Z = 377 ohms for free space, so that for the i-wavelength
antenns. the effective height A = 0.32 wavelength.
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the mazimum effective aperture' A,,. That is,

Maximum effective aperture = -WI_L, =A,,. (3-15)
Substituting (3-14) in (3-15) yields an expression for the maximum
effective aperture in terms of the incident power density, the induced

voltage, and the antenna radiation resistance, as follows:

VZ
Aem - 4PR,. (3_16)
The ratio of the effective aperture to the maximum effective aperture

is called the effectiveness ratio «. That is,

4,
Acm

The effectiveness ratio may assume values between zeroand 1 (0 < a < 1).
A perfectly matched, 100 per cent efficient antenna has an effectiveness
ratio of unity.

Ordinarily the terminating impedance is not located physically at the
antenna terminals as suggested in Fig. 3-2. Rather, it is in a receiver
which is connected to the antenna by a length of transmission line. In
this case Zr is the equivalent impedance which appears across the antenna
terminals. If the transmission line is lossless, the power delivered to the
receiver is the same as that delivered to the equivalent terminating im-
pedance Zy. If the transmission line has attenuation, the power delivered
to the receiver is less than that delivered to the equivalent terminating
impedance by the amount lost in the line.

3-3. Scattering Aperture. In the preceding section we discussed the
effective area from which power is absorbed. Referring to Fig. 3-2b, the
voltage induced in the antenna produces a current through both the
antenna impedance Z, and the terminal or load impedance Z,. The
power W absorbed by the terminal impedance is, as we have seen, the
square of this current times the real part of the load impedance. Thus,
as given in (3-6), W = I’R,. Let us now inquire into the power appearing
in the antenna impedance Z,. The real part of this impedance R, has
two parts, the radiation resistance R, and the loss resistance B, (R, =
R, 4 E.). Therefore, some of the power which is received will be dissipated
as heat in the antenna as given by

W = I’R, (3-18)

1The “maximum effective aperture,” as here defined, is equivalent to the “effective
area” of an antenna based on its directivity as defined by the Institute of Radio

Engineers’ (IRE) Standards.

Effectiveness ratio = a = (dimensionless) (3-17)
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The remainder iz “dissipated” in the radiation resistance, in other words,
is reradiated from the antenna. The reradiated power is

W"” = I'R, (3-19)

This reradiated or scattered power is analogous to the power that is
dissipated in a generator in order that power be delivered to a load. Under
conditions of maximum power transfer, as much power is dissipated in the
generator as is delivered to the load.

The reradiated power may be related to a scaltering aperture or scattering
cross section. This aperture A, may be defined as the ratio of the re-
radiated power to the power density of the incident wave. Thus

(X4

A, = scattering aperture = B (3-20)
where
VR
"= IR, = ; -21
W ® TR TEy+ Eat X &
If the antenna loss resistance B, = 0, and By, = R, and X, = — X for
maximum power transfer, then
Vﬂ
A = 1R, (3-22)
or the scattering aperture equals the maximum effective aperture, that is,
A4, =4,, (3-23)

Thus, under conditions for which maximum power is delivered to the
terminal impedance, an equal power is reradiated from the receiving
antenna.

The ratio of the scattering aperture to the effective aperture will be
called the scattering ratio 8, that is,

Scattering ratio = i‘ =  (dimensionless) (3-24)
The seattering ratio may assume values between zero and infinity

(0L B <=).

For conditions of maximum power transfer and zero antenna losses,
the scattering ratio is unity. If the terminal resistance is increased, both
the scattering aperture and the effective aperture decrease, but the scatter-
ing aperture decreases more rapidly so that the scattering ratio becomes
smaller. By increasing the terminal resistance, the ratio of the scattered
to absorbed power can be made as small as we please, although by so
doing the absorbed power is also reduced (see Fig. 3-3).
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On the other hand, it may be that we should like to make the reradiation
as large as possible. This might be the case, for example, if the antenna
is not connected to a receiver but is used as a so-called parasitic antenna
whose funection is to reradiate the power received from a nearby trans-
mitting antenna. The field reradiated by the parasitic antenna interferes
with the field from the transmitting antenna so as to praduce the desired
directional pattern. Depending on the phase of the current in the parasitic
antenna, it may act either as a director or as a reflector. To make the
reradiated power a maximum, the terminal impedance should be zero and

4

Relative aperture

o 1 2 3 4 5 6 7 8 9 10

Relative terminal resistance %
4

F1e. 3-3. Variation of cffective aperture A,, scattering aperture A4,, and collecting

aperture A. as a function of the relative terminal resistance Rr/R. of a small antenna.
It is assumed that By = X, = Xy = 0.

the antenna should also be resonant, that is, R, = X, = X, = 0. We
also assume R, = 0. Then from (3-21) the reradiated power is

rr V2
W = R (3-25)
and the maximum scattering aperture becomes
VZ
Aum - Pﬁ; (3-26)
or
A, =44,. (3-27)

The maximum cross section of an antenna as a scatterer ot energy is thus
four times as great as its maximum effective aperture as an absorber of
energy.

The relation between A, and A, as a function of the relative terminal
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resistance y/R, is shown in Fig. 3-3. In this graph it is assumed that
R.=X,=X,=0.

The reradiated or scattered field of an absorbing antenna may be consid-
ered as interfering with the incident field so that a shadow is cast behind the
antenna as illustrated in Fig. 34. The shadow will not be so sharply
defined as suggested in Fig. 3-4, but a decrease in the field intensity or a
partial shadow must be present.

’ N

—_— — —_—
Antenna
'/
incident —>\ /
plane < - 3o Shadow
wave — >Scoﬁered
/ \ waves
———
—_— —— U
\ — e —

F1e. 3-4. Shadow cast by a recciving antenna.

3-4. Loss Aperture. If R, is not zero, some power 1s dissipated as heat
in the antenna. This may be related to a loss aperture A, which is given by
4, = 'R, _ VR,
g P PR, + R. + Rp)* 4+ (X4 + X))
3-5. Collecting Aperture.' Three types of apertures have now been
discussed: effective, scattering, and loss. These three apertures are re-
lated to three .ways in which power collected by the antenna may be con-
verted: into heat in the terminal resistance (effective aperture); into heat
in the antenna (loss aperture); or into reradiated power (scattering aper-
ture). By conservation of energy the total power collected is the sum of
these three powers. Thus, adding these three apertures together yields
what will be called the collecting aperture as given by

— Vz(Rr + RL + RT) _ : .
PR + R+ R’ + (Xa + X7~ At AT A (329

The variation of A, with R,/R, for the case of A;, = 0 is shown in Fig. 3-3.
3-6. Physical Aperture. It is often convenient to speak of a fifth type of
aperture called the physical aperture A,. This aperture is a measure of

(3-28)

A,

1Collecting aperture as here defined is different from that given in “Very High Fre-
quency Techniques,” by Radio Research Laboratory staff, McGraw-Hill Book Com-
pany, Inc., New York, 1947, p. 227. Collecting aperture as defined in that reference is
what we have here called the maximum effective aperture.
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the physical size of the antenna. The manner in which it is defined is
entirely arbitrary. For example, it may be defined as the physical cross
section (in square meters or square wavelengths) perpendicular to the
direction of propagation of the incident wave with the antenna oriented
for maximum response. This is a practical definition in the case of many
antennas. For example, the physical aperture of an electromagnetic horn
is the area of its mouth, while the physical aperture of a linear cylindrical
dipole is the cross-secticnal area of the dipole. However, in the case of
a short stub antenna mounted on a very large ground plane, the simple
definition given above is of questionable significance owing to the im-
portance of the currents on the ground plane. Thus, the physical aperture
has a simple, definite meaning only for some antennas. On the other
hand, the effective aperture has a definite, simply defined value for all
antennas.

The ratio of the maximum effective aperture to the physical aperture
will be called the absorption ratio v, that is,

Absorption ratio = Aen (dimensionless) (3-30)

a, 7

The absorption ratio may assume values between zero and infinity
0 <y <)

3-7. Maximum Effective Aperture of a Short Dipole. In this section the
maximum effective aperture of a short dipole with uniform current will
be calculated. Let the dipole have a
length ! which is short compared
with the wavelength (I <« A). Let it

be coincident with the y axis at the 1
origin as shown in Fig. 3-5, with a Ry

4

plane wave traveling in the negative — ¢ D—s
z direction incident on the dipole. Direction T Nsnort

. . of incident dipote
The wave is assumed to be linearly wave /

polarized with E in the y direction.
The current on the dipole is assumed
constant and in the same phase over  Fiq. 3-5. Short dipole with uniform cur-
its entire length, and the terminat- rent induced by incident wave.
ing resistance R is assumed equal
to the dipole radiation resistance E,. The antenna loss resistance R, is
assumed equal tc zero.

The maximum effective aperture of an antenna is given by (3-16) as

VZ

Ao = TPR.

(3-31)

where the effective value of the induced voltage V is here given by the
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produet of the effective electric field intensity at the dipole and its length,*
that is,

V = El (3-32)

The radiation resistance R, of a short dipole of length ! with uniform
current will be shown later to be given by

R, = x2 (3"33)
where A = wavelength
The power density, or Poynting vector, of the incident wave at the dipole
is related to the field intensity by

EZ
P== (3-34)

where Z = intrinsic impedance of the medium
In the present case, the medium is free space so that Z = 120x ohms.
Now substituting (3-32), (3-33), and (3-34) into (3-31), we obtain for the
maximum effective aperture of a short dipole

1200E°0\ 3 . 2
A,, = 2920 = 8 A= 0119 (3-35)
Equation (3-35) indicates that the maximum effective aperture of a short
dipole is somewhat more than 1/10 square wavelength and is independent
of the length of the dipole provided only that it is small (I <« ). The
maximum effective aperture neglects the effect of any losses, which prob-
ably would be considerable for an actual short dipole antenna. If we
assume that the terminating impedance is matched to the antenna im-
pedance but that the antenna has a loss resistance equal to its radiation
resistance, the effective aperture from (3-10) is one-half the maximum
effective aperture obtained in (3-35).

3-8. Maximum Effective Aperture of a Linear 1-Wavelength Antenna.
As a further illustration, the maximum effective aperture of a linear
i-wavelength antenna will be calculated. It is assumed that the current
has a sinusoidal distribution and is in phase along the entire length of the
antenna. It is further assumed that B, = 0. Referring to Fig. 3-6a, the
current I at any point y is then

I =1, cos 2 (3-36)
A plane wave incident on the antenna is traveling in the negative x direc-
tion. The wave is linearly polarized with £ in the y direction. The

1The effective height & of the short dipole with uniform current is equal to its length /.
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equivalent circuit is shown in Fig. 3-6b. The antenna has been replaced
by an equivalent or Thévenin generator. The infinitesimal voltage dV of
this generator due to the voltage induced by the incident wave in an
infinitesimal element of length dy of the antenna is

av = B dy cos 2 3-37)
It is assumed that the infinitesimal induced voltage is proportional to the
current at the infinitesimal element as given by the current distribution
(3-36).

z
le ))/2 |
I
I
/ — av R,
(a) (d) Re

Fie. 3-6. Linear }-wavelength antenna in field of electromagnetic wave {a) and
equivalent circuit (b).

The total induced voltage V is given by integrating (3-37) over the
length of the antenna. This may be written as
N4

v=2[ E cos 2%?/ dy (3-38)

0

Performing the integration in (3-38) we have

~ B

T

(3-39)

The value of the radiation resistance R, of the linear i-wavelength antenna
will be taken as 73 ohms." The terminating resistance B, is assumed
equal to E,. The power density at the antenna is as given by (3-34).
Substituting (3-39), (3-34), and R, = 73 into (3-16), we obtain, for the
maximum effective aperture of a linear -wavelength antenna,

2y 2
A, = Z‘%ﬂ;‘— - % A* = 0.13 * (3-40)

1The derivation of this value is given in Chap. 5.
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Comparing (3-40) with (3-35), the maximun effective aperture of the
linear i-wavelength antenna is about 10 per cent greater than that of
the short dipole.

The maximum effective aperture of the $-wavelength antenna is ap-
proximately the same as an area § by  wavelength on a side, as illustrated
in Fig. 3-7a. This area is } square wavelength. An elliptically shaped

Linear half-wave

J_///{ 7

|
i

(a) (b)
F1c. 3-7. (a) Maximum effective aperture of linear 3-wavelength antenna is approxi-
mately represented by rectangle 1 by % wavelength on a side. (b) Maximum effective

aperture of linear }-wavelength antenna represented by elliptical area of 0.13 square
wavelength,

aperture of 0.13 square wavelength is shown in Fig. 3-7b. The phyvsical
significance of these apertures is that power from the incident plane wave
is absorbed over an area of this size by the antenna and is delivered to
the terminating resistance.

A typical thin }-wavelength antenna may have a conductor diameter
of 1/400 wavelength, so that its physical aperture is only 1/800 square
wavelength. For such an antenna the maximum effective aperture of
0.13 square wavelength is about 100 times larger.

3-9. Relation of Aperture to Directivity and Gain. In Chap. 2 the con-
eept of directivity was developed for a point source of radiation or trans-
mitting antenna. By reciprocity, the shape of the radiation pattern of a
transmitting antenna is identical with its pattern when it is a receiving
antenna (see Sec. 10-2). Thus, the concept of directivity, which is based
on pattern shape, can be extended to receiving antennas, the directivity
being the same for both transmission and reception.

The aperture of receiving antennas has been discussed in the preceding
sections. It follows that if the directivity of a receiving antenna is in-
creased, its maximum effective aperture is increased in direct proportion.
Therefore, the maximum effective apertures of two antennas, A,,, and

d .2, are in the same proportion as the directivities of the two antennas,
M, and D,. That is,

“1¢m1

em3

Sl=

(341)

o
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In Chap. 2 the gain of a transmitting antenna with respect to a lossless
isotropic source was shown to be equal to the directivity times the antenna
efficiency. If the definition of gain is now extended to include both losses,
as expressed by the efficiency factor £ and the effect of impedance mis-
match, we may replace k in (2-51) by the effectiveness ratio a; then

Go = aD (3-42)

where @, is the gain of a transmitting or receiving antenna with respect to
a lossless isotropic antenna. The isotropic antenna is assumed to be
terminated for maximum power transfer, but the antenna under con-
sideration may or may not be. If the antenna is terminated for maximum
power transfer, « = k and (3-42) reduces to (2-51).

Let us now compare the gain of two antennas, G, and Gy,. If the
directivities of these antennas are D, and D, and their effectiveness ratios,
a; and o, respectively, we have from (3-41)

_Gﬁ _ a D, . i Aom
Goz - azDz - aermz (3-43)
By (3-17) the product of the maximum effective aperture and the effective-
ness ratio is the effective aperture. Therefore, (3-43) becomes
Gor _ Aa
G ~ 4., (3-44)
where 4., and A,; are the effective apertures of antennas 1 and 2.

3-10. Maximum Effective Aperture of an Isotropic Source. The maxi-
mum effective aperture of an isotropic source will now be derived. The
directivity of an isotropic source is unity. If antenna 1 is an isotropic
source, then, in (3-41), D, = 1 and

Aem
D,

Equation (3-45) states that the maximum effective aperture of an
isotropic antenna (antenna 1) is equal to the ratio of the maximum effective
aperture to the directivity of any antenna (antenna 2). We have already
calculated the maximum effective aperture and directivity for a short dipole
antenna. These are (3/8m)A* and 3/2, respectively. Introducing these
values into (3-45) gives

A= (3-45)

2 2
_3X2N N 07902 (3-46)

Aom 3 X 87 4

Substituting (3-46) in (3-45), we obtain the relation that the directivity
of any antenna is equal to its maximum effective aperture, divided by the
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maximum effective aperture of an isotropic antenna. That is, the directiv-
ity of any antenna is equal to 4x/\? times its maximum effective aperture,
Thus,

D=2 4., (347)

3-11. Maximum Effective Aperture and Directivity of Isotropic, Short
Dipole, and 1-Wavelength Antennas. The maximum effective aperture of
a linear %-wavelength antenna was calculated in Sec. 3-8 as 0.13 square
wavelength. The directivity of the i-wavelength antenna can now be
calculated from (3-47) as

30
D = dr o= = 1.64 (3-48)

The maximum effective aperture and directivity of isotropic, short dipole,
and i-wavelength antennas have now been calculated. The values are
summarized in Table 3-1.

TABLE 3-1

Maximum
Antenna effective Directivity Db directivity*
aperture, \*

1

Isotropic. .......coovvnn.. — = 0.079 1 0
4r
Short dipole. ............. 3 _ 0119 1.5 1.76
87
; 1w 30
Linear 3-wavelength.... ... = = 0.13 1.64 2.14
73mr

* Db directivity = 10 logw D.

3-12. Friis Transmission Formula. As a further illustration of the
utility of the aperture concept, it will be applied to the derivation of a
simple free-space transmission formula which has been presented by
H. T. Friis."

Referring to Fig. 3-8, an isotropic, 100 per cent efficient” point source
vadiates a power W,. At a distance r in free space, the power density is

t A Note on a Simple Transmission Formula, Proc. I.R.E., 34, 254-256, May, 1946.
2 Power radiated equals power input.
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P 4gr?

(3-49)

The vower W, delivered to the equivalent impedance appearing across
the antenna terminals is

WlAar

Wr = AarP = 41”_2

(3-50)

where A,, is the effective aperture of the receiving antenna. If the
souree is not isotropic but has a directivity D, (3-50) becomes

r Aor-D
v 4 oo
From (3-47) we have
D, =45 Ay (3-52)

where A,,. is the maximum effective aperture of the source or trans-
mitting antenna. The concept of aperture, originally developed for
receiving aniennas, is here extended to transmitting antennas, the aperture

{sotropic /
source
P r
W| \
Fic. 3-8. Frec-space transmission circuit consisting of isotropic source and receiving
horn of maximum effective aperture A4 m.

Receiver

of a transmitting antenna being equal to its aperture when used as a
receiving antenna. Introducing (3-52) into (3-51) gives the Friis trans-
mission formula,"

W, _ Auwlowm
W, A%

(3-53)

This formula may be made more general by replacing the maximum
effective aperture of the source by its effective aperture A,,, Then we
have
W, _ A A
W, A%
The ratio W,/W, in (3-54) may be called a power transfer rafio. It
expresses the fraction of the power input to a transmitting antenna

(3-59)

*1n the formula as given by Friis both apertures are maximum effective apertures,
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which is picked up and delivered to the terminals of a receiving antenna
at a distance 7 in free space. The power-transfer ratio is expressed by
(3-54) in terms of the effective apertures of the transmitting and receiving
antennas, their separation, and the wavelength. Equation (3-54) is a
far-field relation and hence will not apply if r is too small compared with
the size of the antenna. However, the error is less than a few per cent if

2
r> 2 (3-55)

A
where d is the maximum linear dimension of either antenna. "T'he formula
is also restricted to free-space circuits. If transmission is via a divect path
and a simple ground reflection, the power transfer ratio may lie between the
extremes of four times the value given by (3-54) and zero, depending on
whether the direct and reflected waves reinforce or cancel at the receiving

location.

PROBLEMS

3-1. What is the maximum effective aperture of a microwave antenna with a
directivity of 900?

3-2. What is the maximum power received at a distance of 0.5 kilometer over a
free-space 1,000-Me circuit consisting of a transmitting antenna with a 25-db gain
and a receiving antenna with a 20-db gain? The gain is with respect to a loss-
less isotropic source. The transmitting antenna input is 150 watts.

3-3. What is the maximum effective aperture (approximately) for a beam an-
tenna having half-power widths of 30° and 35° in perpendicular planes intersecting
in the beam axis? Minor lobes are small and can be neglected.
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CHAPTER 4

ARRBRAYS OF POINT SOURCES

4-1, Introduction.! In Chap. 2 an antenna was considered as a single
point source. In Chap. 3 an antenna was treated as an aperture. In
tius chapter we return again to the point-source concept, however, ex-
tending it to a consideration of arrays of point sources. This approach
is of great value since the pattern of any antenna can be regarded as
produced by an array of point sources. Much of the discussion will
concern arrays of isotropic point sources which may represent many
different kinds of antennas. Arrays of nonisotropic but similar point
sources are also treated, leading to the principle of pattern multiplication.
From arrays of discrete point sources we proceed to continuous arrays of
point sources and Huygens’ principle.

4-2. Arrays of Two Isotropic Point Sources. Let us introduce the sub-
ject of arrays of point sources by considering the simplest situation,
namely, that of two isotropic point sources. As illustrations, five cases
involving two isotropic point sources will be discussed.

Case 1. Two Isotropic Point Sources of Same Amplitude and Phase. The
first case we shall analyze is that of two isotropic point sources having
equal amplitudes and oscillating in the same phase. Let the two point
sources, 1 and 2, be separated by a distance d and located symmetrically
with respect to the origin of the coordinates as shown in Fig. 4-la. The
angle ¢ is measured counterclockwise from the positive z axis. The
origin of the coordinates is taken as the reference for phase. Then at a
distant point in the direction ¢ the field from source 1 is retarded by
id. cos ¢, while the field from source 2 is advanced by id, cos ¢, where
d. is the distance between the sources expressed in radians. That is,

4 = 2
A
! In calculating patterns mnuch labor may be saved in evaluating trigonometric func-
tions by expressing the argument of the function in turns instead of in radians or degrees.
Those not already familiar with this timesaving technique may refer to the discussion
in the Appendix on “Radians, degrees, and turns.”” A table of trigonometric functions
of arguments expressed in turns is also included in the Appendix.

51

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



58 ANTENNAS [CHaPp. 4
The total field at a large distance r in the direction ¢ is then
E = Ee % + et (4-1)

where & = d. cos ¢ and the amplitude of the field components at the
distance r is given by K,.

90°

To distont
point

%~ ’

(a)

(c)

Eoe"’j{ {from source 2)

T T

Tt

—
Eoe‘j¥ {(from source 1) (b)
F1g. 4-1. (a) Relation to coordinate system of two isotropic point sources separated
by a distance d. (b) Vector addition of the fields from two isotropic points sources of
equal amplitude and same phase located as in (a). (c) Field pattern of two isotropic
point sources of equal amplitude and same phase located as in (a) for the case where

the separation d is 3 wavelength.

The first term in (4-1) is the component of the field due to source 1
and the second term the component due to source 2. Equation (4-1)
may be rewritten

E = 2E,

e+i% _; e—i% (4-2)
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which by a trigonometric identity is

E = 2E, cos ¥ _ 2E, cos (é— €os qb\ (4-3)
2 g2 % ?)

This result may also be obtained with the aid of the vector diagram'
shown in Fig. 4-1b, from which (4-3) follows directly. We note in Fig.
4-1b that the phase of the total field £ does not change as a function of
Y. To normalize (4-3), that is, make its maximum value unity, set 2E, =
1. Suppose further that d is 3 wavelength. Then d, = #. Introducing
these conditions into (4-3) gives

E = cos (7—2r cos ¢) (4-4)
The field pattern of E vs. ¢ as expressed by (4-4) is presented in Fig. 4-1c.
The pattern is a bidirectional figure of eight with maxima along the y
axis. The space pattern is doughnut-shaped, being a figure of revolution
of this pattern around the 2 axis.

The same pattern can also be obtained by locating source 1 at the
origin of the coordinates and source 2 at a distance d along the positive
x axis as indicated in Fig. 4-2a. Taking now the field from source 1 as
reference, the field from source 2 in the direction ¢ is advanced by d,
cos ¢. Thus, the total field ¥ at a large distance r is the vector sum of
the fields from the two sources as given by

E = Eo + EOGHW (4'5)
where ¢ = d, cos ¢
The relation of these fields is indicated by the vector diagram of Fig. 4-2b.
From the vector diagram the magnitude of the total field is
E = 2k, cos2£ = 2K, cosd*'—céo—s—2

as obtained before in (4-3). The phase of the total field E is, however,
not constant in this case but is ¥/2, as also shown by rewriting (4-5) as

¥

2

1"£ -
E=E(l +¢% = 2Eoei\%(e—2—-}_§-6—-

(4-6)

) = 2Eoei% cO8 2£ (4-7)
Normalizing by setting 2E, = 1, (4-7) becomes

E=c¢? cosé\k = cos2£ /g (4-8)

In (4-8) the cosine factor gives the amplitude variation of E, and the

1Tt is to be noted that the quantities represented here by vectors are not true space
vectors but merely vector representations of the time phase (i.c., phasors).
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exponential or angle factor gives the phase variation with respect fo source
1 as the reference. The phase variation for the case of 3-wavelength
spacing (d, = =) is shown by the dashed line in Fig. 4-2c. Here the phase
angle with respect to the phase of source 1 is given by /2 = (x/2) cos ¢.

Y

Eoe*jw(from source 2)

% | S

1 12 $=0
% 2 X Eo (from source 1)
(a) (b)
+90° < —=
\\ |.—~Rotation around source | //
| /s
N Rotatian around center point of array
o° > '/
\ /
\ /
\\ //
\\\ ’// (C)
-90° o -
0° 90° 18Q° 270° 360°
¢

F1a. 4-2. (a) Two isotropic point sources with the origin of the coordinate system
coincident with one of the sources. (b) Vector addition of the fields from two isotropic
point sources of equal amplitude and same phase located as in (a). (c) Phase of total
field as a function of ¢ for two isotropic point sources of same amplitude and phase
spaced { wavelength apart. The phase change is zero when referred to the center point
of the array but is ¥/2 as shown by the dashed curve when referred to source 1.

The magnitude variation for this case has already been presented in
Fig. 4-1c. When the phase is referred to the point midway between the
sources (Fig. 4-1a), there is no phase change around the array as shown
by the solid line in Fig. 4-2c. Thus, an observer at a fixed distance ob-
serves no phase change when the array is rotated (with respect to ¢)
around its mid-point, but a phase change (dashed curve of Fig. 4-2¢c) is
observed if the array is rotated with source 1 as the center of rotation.

Case 2. Two Isotropic Point Sources of Same Amplitude But Opposite
Phase. This case is identical with the one we have just considered except
that the two sources are in opposite phase instead of in the same phase.
Jet the sources be located as in Fig. 4-la. Then the total field in the
direction ¢ at a large distance r is given by

E = Ee''s — Ee's (4-9)
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‘rom which

E = 2jE, sin—g = 2jF, sin (% cos ¢> (4-10)

Whereas in Case 1 Eq. (4-3) involves the cosine of ¢/2, (4-10) for
Case 2 involves the sine. Equation (4-10) also includes an operator j,
indicating that the phase reversal of one of the sources in Case 2 results
in a 90° phase shift of the total field as compared with the total field for

90°

60°

F16. 4-3.  Relative field pattern for two isotropic point sources of the same amplitude
_ut opposite phase, spaced § wavelength apart.

Case 1. This is unimportant here. Thus, putting 2jE, = 1 and con-
sidering the special case of d = A/2, (4-10) becomes

E = sin (g oS ¢) (4-11)

The directions ¢, of maximum field are obtained by setting the argu-
ment of (4-11) equal to £=(2k + 1)x/2. Thus,

™

2

where k = 0,1,2,3... Fork =0, cos¢, = +1 and ¢,, = 0° and 180°,
The null directions ¢, are given by

cos ¢, = +(2k + 1)’5r (4-11a)

™

5 008 o = Lkr (4-11b)

For k = 0, ¢, = £90°

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



62 ANTENNAS [CHAP. 4

The half-power directions are given by
’—2’cos¢ = +(2% + 1)jzr (4-11¢)

Fork = 0,¢ = +60° £120°

The field pattern given by (4-11) is shown in Fig. 4-3. The pattern
is a relatively fat figure of eight with the maximum field in the same
direction as the line joining the sources (x axis). The space pattern is a
figure of revolution of this pattern around the z axis. The two sources,
in this case, may be described as a simple type of “end-fire” array. In
contrast to this pattern, the in-phase point sources produce a pattern
with the maximum field normal to the line joining the sources, as shown
in Fig. 4-1c. The two sources for this case may be described as a simple
“broadside” type of array.

Case 3. Two Isotropic Point Sources of the Same Amplitude and in Phase
Quadrature. Let the two point sources be located as in Fig. 4-1a. Taking
the origin of the coordinates as the reference for phase, let source 1 be
retarded by 45° and source 2 advanced by 45°. Then the total field in
the direction ¢ at a large distance r is given by

E = B 55D 4 B (5D (4-12)
From (4-12) we obtain
E = 2E, cos (7—; + % cos qb) (4-13)
Letting 2E, = 1 and d = A\/2, (4-13) becomes
v T
E = cos (E + 5 €os ¢) (4-14)

The field pattern given by (4-14) is presented in Fig. 4-4. The space
pattern is a figure of revolution of this pattern around the x axis. Most
of the radiation is in the second and third quadrants. It is interesting to
note that the field in the direction ¢ = 0° is the same as in the direction
¢ = 180°. The directions ¢, of maximum field are obtained by setting

the argument of (4-14) equal to kr, where k = 0, 1, 2, 3. ... In this way
we obtain
T n
Z + 5 cos ¢, = kmw (4—15)
For k = 0,
T ki
5 cos b = i (4-16)
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and

én = 120° and 240° (4-17)

90°
120°
60°

150° 30°

180° o*

“e
N}J
™~

Fia. 4-4. Relative field pattern of two isotropic point sources of same amplitude and
in phase quadrature for a spacing of 1 wavelength. The source to the right leads that
to the left by 90°.

If the spacing between the sources is reduced to 1 wavelength, (4-13)
becomes

E = cos (“’_' + 7 cos ¢> (4-18)
4 4

The field pattern for this case is illustrated by Fig. 4-5a. It is a cardioid-

shaped, unidirectional pattern with maximum field in the negative z

direction. The space pattern is a figure of revolution of this pattern

around the z axis.

A simple method of checking the direction of maximum field is illus-
trated by Fig. 4-5b. Source 2 leads source 1 by 90° as indicated by the
vectors in the top diagram. By the time the field from source 2 has
arrived at source 1, the phase of source 1 has advanced 90° so that the
fields add in the —z direction as shown in the middle diagram. On the
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other hand, by the time the field from source 1 arrives at source 2, the
phase of source 2 has advanced 90° so that the two fields are in phase
opposition, and, therefore, the total field in the —+x direction is zero as
gshown in the bottom diagram.

90°
120° 60°

(a)

—
2

-X ———— lo———%.-——»o — X

.5;<————->

Y
b

Fia. 4-5. (a) Relative field pattern of two isotropic sources of same amplitude and
in phase quadrature for a spacing of } wavelength. Source 2 leads source 1 by 90°.
(b) Vector diagrams illustrating field reinforcement in —z direction and field cancellation
in +=z direction.

Case 4. (Feneral Case of Two Isotropic Point Sources of Equal Amplitude
and Any Phase Difference. Proceeding now to a more general situation,
iet us consider the case of two isotropic point sources of equal amplitude
put of any phase difference 6. The total phase difference ¢ between the
fields from source 2 and source 1 at a distant point in the direction ¢ (see
Fig. 4-2a) is then

Y =d,co8¢ + & (4-19)
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Taking source 1 as the reference for phase, the positive sign in (4-19)
indicates that source 2 is advanced in phase by the angle 6. A minus
zign would be used to indicate a phase retardation. If, instead of re-
ferring the phase to source 1, it is referred to the center point of the array,
the phase of the field from source 1 at a distant point is given by —¢/2
and that from source 2 by +¥/2. The total field is then

E = Eo(ei% + e“f%) = 2E, cos~2l/—/ (4-20)

Normalizing (4-20), we have the general expression for the field pattern
of two isotropic sources of equal amplitude and arbitrary phase,

¥

= COS
2

(4-21)
where ¢ is given by (4-19). The three cases we have discussed are ob-
viously special cases of (4-21). Thus, Cases 1, 2, and 3 are obtained
from (4-21) when & = 0°, 180°, and 90°, respectively.

Case 5. Most General Case of Two Isotropic Point Sources of Unequal
Amplitude and Any Phase Difference. A still more general situation,
involving two isotropic point sources, exists when the amplitudes are
unequal and the phase difference is arbitrary. ILet the sources be situated
as in Tig. 4-6a with source 1 at the origin. Assume that the source 1

Y

; /E

1 d 2 X Eo

(a) (b)

Fre. 4-6. (a) Two isotropic point sources of unequal amplitude and arbitrary phase
with respect to coordinate system. (b) Vector addition of fields from unequal sources
srranged as in (a). The amplitude of source 2 is assumed to be smaller than that of
source 1 by the factor a.

Y

has the larger amplitude and that its field at a large distance r has an
amplitude of F, Let the field from source 2 be of amplitude aF,
(0 < a < 1) at the distance 7. Then, referring to Fig. 4-6b, the magnitude
and phase angle of the total field ¥ is given by

E=Eov/(1+acosy) + o sin’y /arctan I—% (d4-22)
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where ¢ = d, cos ¢ + 6 and the phase angle (£) is referred to source 1.
This is the phase angle £ shown in Fig. 4-6b.

4-3. Nonisotropic But Similar Point Sources and the Principle of Pat-
tern Multiplication. The cases considered in the preceding section all
involve isolropic point sources. These cases can readily be extended to a
more general situation in which the sources are nonisotropic but similar.

The word similar is here used to indicate that the variation with absolute
angle ¢ of both the amplitude and phase of the field is the same." The
maximum amplitudes of the individual sources may be unequal. If,

however, they are also equal, the

Y sources are not only similar but are
Short identical.
dipoles ¢ As an example, let us reconsider
1 /\ Case 4 of Sec. 4-2 in which the
D X sources are identical, with the modi-
! d fication that both sources 1 and 2

have field patterns given by
F1a. 4-7. Two nonisotropic sources with , .
respect to coordinate system. B, = Egsm ¢ (4-23)

Patterns of this type might be pro-
duced by short dipoles oriented parallel to the = axis as suggested by Fig,.
4-7. Substituting (4-23) in (4-20) and normalizing by setting 2E}; = 1
gives the field pattern of the array as

E = sin ¢ cos 4 (4-24)
2
where y = d, cos¢ + &

This result is the same as obtained by multiplying the pattern of the
individual source (sin ¢) by the pattern of two isotropic point sources
(cos ¥/2).

If the similar but unequal point sources of Case 5 (Sec. 4-2) each has
a pattern as given by (4-23), the total normalized pattern is

E =sin ¢ v/(1 + a cos ¥)* + a’sin® ¢ (4-25)

Here again the result is the same as that obtained by multiplying the
pattern of the individual source by the pattern of an array of isotropic
point sources. ,

These are examples illustrating the principle of pattern multiplication,
which may be expressed as follows: The field pattern of an array of non-
isotropic but similar point sources is the product of the pattern of the

1 The patterns not only must be of the same shape but also must be oriented in the
same direction to be called “‘similar.”
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individual source and the pattern of an array of isotropic point sources,
having the same locations, relative amplitudes, and phases as the non-
isotropic point sources. This principle may be applied to arrays of any
number of sources provided only that they are similar. The individual
nonisotropic source or antenna may be of finite size but can be considered
as a point source situated at the point in the antenna to which phase is
referred. This point is said to be the “phase center.”

The above discussion of pattern multiplication has been concerned only
with the field pattern or magnitude of the field. If the field of the non-~
isotropie source and the array of isotropic sources vary in phase with space
angle, that is, have a phase pattern which is not a constant, the statement
of the principle of pattern multiplication may be extended to include this
more general case as follows: The total field pattern of an array of non-
isotropic but stmalar sources is the product of the individual source patiern
and the pattern of an array of isotropic point sources each located at the
phase center of the individual source and having the same relative amplitude
and phase, while the total phase patlern is the sum of the phase patterns of
the individual source and the array of isotropic point sources. The total
phase pattern is referred to the phase center of the array. In symbols,
the total field ¥ is then

E= f(BJ ¢) F(Gr d’) /fp(ey d’) + F,,(B, d’) (4'26)

Field pattern Phase pattern

where f(6, ¢) = field pattern of individual source
f»(6, ¢) = phase pattern of individual source
F(8, ¢) = field pattern of array of isotropic sources
F,(6, ¢) = phase pattern of array of isotropic sources
The patterns are expressed in (4-26) as a function of both polar angles
to indicate that the principle of pattern multiplication applies to space
patterns as well as to the two-dimensional cases we have been considering,.
To illustrate the principle, let us apply it to two special modifications
of Case 1 (Sec. 4-2).

Example 1. Assume two identical point sources separated by a distance d, each
source having the field pattern given by (4-23) as might be obtained by two short
dipoles arranged as in Fig. 4-7. Let d = A/2 and the phase angle § = 0. Then the
total field pattern is

= sin ¢ cos (1—; cos ¢) (4-27)

This pattern is illustrated by Fig. 4-8¢ as the product of the individual source
pattern (sin¢) shown at (a) and the array pattern {cos [(x/2) cos¢]} asshown at (b).
The pattern is sharper than it wasin Case 1 (Sec. 4-2) for the isotropic sources. In
this instance, the maximum field of the individual source is in the direction ¢ = 90°,
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which evineides with the direction of the maximum field for the array of two iso-
tropic sources.

/]

(a) (b) (¢)

Fic. 4-8. Example of pattern multiplication. Two nonisotropic but identical point
sources of same amplitude and phase, spaced 3 wavelength apart, and arranged as in
Fig. 4-7, produce the pattern shown at (¢). The individual source has the pattern
shown at (a), which, when multiplied by the pattern of an array of two isotropic point
sources (of the same amplitude and phase) as shown at (b), yields the total array
pattern of (c).

Example 2. Let us consider next the situation in which d = A/2 and § = O asin
IExample 1 but with individual source patterns given by
E, = E{ cos ¢ (4-28)

This type of pattern might be produced by short dipoles oriented parallel to the
y axis as in Fig. 49. Here the maximum field of the individual source is in the
direction (¢ = 0) of a null from the ar-

Y ray, while the individual source has a
Short null in the direction (¢ = 90°) of the pat-
dipoles tern maximum of the array. By the
0] principle of pattern multiplication the
2 total normalized field is
X

il
DR

E = cos ¢ cos <7§r cos qb) (4-29)

Fia. 49. Array of two nonisotropic The total array pattern in the z-y
sources with respect to coordinate system. plane as given by (4-29) is illustrated in

Fig. 4-10c as the product of the individ-
ual source pattern (cos ¢) shown at (a¢) and the array pattern {cos [(w/2) cos ¢]}
shown at (b). The total array pattern in the z-y plane has four lobes with nulls at
the z and y axes.

The above examples illustrate two applications of the principle of
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pattern multiplication to arrays in which the source has a simple pattern.
However, in the more general case the individual source may represent an
antenna of any complexity provided that the amplitude and phase of its
field can be expressed as a function of angle, that is to say, provided
that the field pattern and the phase pattern with respect to the phase
center are known. If only the total field pattern is desired, phase patterns
need not be known provided that the individual sources are identical.

If the arrays in the above examples are parts of still larger arrays,
the smaller arrays may be regarded as nonisotropic point sources in the
larger array, another application of the principle of pattern multiplication
vielding the complete pattern. In this way the principle of pattern
multiplication can be applied » times to find the patterns of arrays of
arrays of arrays.

(@) (%) (¢)

Fic. 4-10. Example of pattern multiplication. Total array pattern (c) as product of
pattern (a) of individual nonisotropic source and pattern (b) of array of two isotropic
sources. The pattern (b) for the array of two isotropic sources is identical with that
of Fig. 4-8b, but the individual source pattern (a) is rotated through 90° with respect
to the one in Fig. 4-8a.

4-4. Example of Pattern Synthesis by Pattern Multiplication. The
principle of pattern multiplication, discussed in the preceding section, is
of great value in pattern synthesis. By pattern synthesis is meant the
process of finding the source or array of sources which produces a desired
pattern. Theoretically an array of isotropic point sources can be found
which will produce any arbitrary pattern. This process is not always
simple and may yield an array which is difficult or impossible to construct.
A simpler, less elegant approach to the problem of antenna synthesis is by
the application of pattern multiplication to combinations of practical
arrays, the combination which best approximates the desired pattern being
arrived at by a trial-and-error process.

To illustrate this application of pattern multiplication, let us consider
the following hypothetical problem: A broadcasting station (in the 500-
to 1,500-ke frequency band) requires a pattern in the horizontal plane
fulfilling the conditions indicated in Fig. 4-11a. The maximum field in-
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tensity, with as little variation as possible, is to be radiated in the 90°

sector between northwest and northeast. No nulls in the pattern can

occur in this sector. However, nulls may occur in any direction in the
N

Uniform maximum
NwW NE

w N €

(b)

Null
(a)

S

Fic. 4-11.  (a) Requirements for pattern of broadcast station, and (b) idealized pattern
fulfilling them.

complementary 270° sector, but, as an additional requirement, nulls must
be present in the due east and due southwest directions in order to prevent
interference with other stations in these directions. An idealized sector
shaped pattern fulfilling those requirements
isillustrated in Fig. 4-11b. The antenna pro-
ducing this pattern is to consist of an array of
four vertical towers. The currents in all
towers are to be equal in magnitude, but the
w T phase may be adjusted to any relationship.
Ji There is also no restriction on the spacing or

geometrical arrangement of the towers.

Since we are interested only in the hori-
zontal plane pattern, each tower may be con-
sidered as an isotropic point source. The
Fic. 4-12. Arrangement of two problem then becomes one of finding a space
isotropic point sources for both and phase relation of four isotropic point
primary and secondary arrays. sources located in the horizontal plane which

fulfills the above requirements.

The principle of pattern multiplication will be applied to the solution
of this problem by seeking the patterns of two pairs of isotropic sources
which yield the desired pattern when multiplied together. First let us
find a pair of isotropic sources whose pattern fulfills the requirements of
a broad lobe of radiation with maximum north and a null southwest.
This will be called the “primary’’ pattern.

Two isotropic sources phased as an end-fire array can produce a pattern
with a broader major lobe than when phased as a broadside array (for
example, compare Figs. 4-1¢ and 4-5). Since a broad lobe to the north

m
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k4

is desired, an end-fire arrangement of two isotropic sources as shown in
Fig. 4-12 will be tried. From a consideration of pattern shapes as a
function of separation and phase,’ a spacing between } and § wavelength

$=0 $=0 P=0
B=45° —= SR R
L
B-135° o=
Primary pattern Secondarymﬂern Total array pattern
d=0.31,5=-104° d=0.6 2, 6=180°
{¢)
(a) (%)
. f 1
. o.nl
Io 0.6 o2
032 .
3
* . o.sxl' /
¢ —a
Primary array Secondary array Total array

Fi1c. 4-13. Field patterns of primary and secondary arrays of two isotropic sources
which multiplicd together give pattern of total array of four isotropic sources.

appears suitable (see Fig. 11-11). Accordingly, let d = 0.3x. Then the
field pattern for the array is

E = cos (4-30)

2
where
¥ = 0.6rcosp + & (4-31)

For there to be a null in the pattern of (4-30) at ¢ = 135° it is necessary
that?

v = (2k + Dr (4-32)
where k = 0,1,2,3...

1 8¢e for example, G. H. Brown, Dircetional Antennas, Proc. I.R.E.; 2B, January,
1937; F. Ii. Terman, ‘“Radio Engineers’” Handbook,” McGraw-Hill Book Company,
ine., New York, 1943, p. 804; C. E. Smith, “Dircctional Antennas,” Cleveland Institute
of Radio Electronics, Cleveland, Ohio, 1946.

2 The azimuth angle ¢ (Fig. 4-12) is measured counterclockwise (cew) from the
north. This is consistent with the engineering practice of measuring positive angles
in a counterclockwise sense. However, it should be noted that the geodetic azimuth angle
of a point is measured in the opposite, or clockwise (ew), sense from the reference direc-
tion, which is sometimes taken as south and sometimes as north.
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Equating (4-31) and (4-32) then gives

1
—0.67 T/E +6=02k 4+ Dr (4-333
or
8 = (2k + Dx + 0.4257 (4-34)

Fork = 0,5 = —104°. The pattern for this case (d = 0.3xand § = —104®
is illustrated by Fig. 4-13a.

+180° =‘ """" ':‘_ Mid-point as phase
ur | { center
g +907
oo
[ =4
]
i
é‘ e meaed  kem————
Q
s . L. Southern source
2 9 as phase center
- ) 1 1 j
l80°°. 90° l?¢0° 270° 360°
(a): Primary pottern.,
+180°~ e———————=——- 1
w ! L~Mid-point as
9 +90% I phase center
2
]
]
g v
Q.
g -9 0° Southern source
- as phase center
]

i [l ]
~180g7 90° 180° 270° 360°
(b): Secondary pattern.

Fic. 4-14. Phase patterns of primary, sccondary, and total arrays having the field
patterns shown in Fig. 4-13. Phase patterns are given for the phase center at the
mid-point of the array and at the southernmost source, the arrangement of the arrays
and the phasc centers being shown at (d). The phase angle ¢ is adjusted to zero at
¢ = 01in all cases. Parts (a) and (b) appear above and {(¢) and (d) on p. 73.

Next, let us find the array of two isotropic point sources which will
produce a pattern that fulfills the requirements of a null at ¢ = 270°
and that also has a broad lobe to the north. This will be called the
“secondary”’ pattern. This pattern multiplied by the primary array
pattern will then yield the total array pattern. If the secondary isotropic
sources are also arranged as in Fig. 4-12 and have a phase difference of
180°, there is a null at ¢ = 270°. Let the spacing d = 0.6 A\. Then the
secondary pattern is given by (4-30), where

v =12rcos¢ + 7 (4-35)
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The pattern is illustrated by Fig. 4-13b. By the principle of pattern
multiplication, the total array pattern is the product of this pattern and
the primary array pattern, or

E = cos (54° cos ¢ — 52°) cos (108° cos ¢ 4 90°) (4-36)

This pattern, which is illustrated by Fig. 4-13¢, satisfies the pattern re-
guirements. The complete array is obtained by replacing each of the
isotropic sources of the secondary pattern by the two-source array pro-

+360°- —————
+270°-
~180°}- - SR

Lr—Mid—poini as

*90°}- phase center

0°

Total phase angle, &

N\l

-90°

Southern
source as
!
-180° . phase center
o 90° 180° 270° 360°
@
(¢): Total pattern
° °
X } r——edee O
° ° Phase
x x center (x)
° ° [ at mid-pont
x } ———— o of arrays
o o J
(d) Primary Secondary Total
arrays array array
° o
Phose
® - ° > | cenfer Wat
° southem~
° 1 most
. % n ) source

Fic. 4-14 (Continued).

ducing the primary pattern. The mid-point of each primary array is
its phase center, so that this point is placed at the location of a secondary
source. The complete antenna is then a linear array of four isotropic
point sources as shown in the lower part of Fig. 4-13, where now each
source represents a single vertical tower. All towers carry the same
current. The current of tower 2 leads tower 1 and the current of tower
4 leads tower 3 by 104°, while the current in towers 1 and 3 and 2 and 4
are in phase opposition. The relative phase of the current is illustrated
by the vectors in the lower part of Fig. 4-13c.
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The solution obtained is only one of an infinite number of possible
golutions involving four towers. It is, however, a satisfactory and practical
solution to the problem.

The phase variation £ around the primary, secondary, and total arrays
is shown in Fig. 4-14a, b, and ¢ with the phase center at the center point
of each array and also at the southernmost source. The arrangement of
the arrays with their phase centers is illustrated in Fig. 4-14d for both
cases.

4-5. Nonisotropic and Dissimilar Point Sources. In Sec. 4-3 noniso-
tropic but similar point sources were discussed, and it was shown that
the principle of pattern multiplication could be applied. However, if the
sources are dissimilar, this principle is no longer applicable and the fields
of the sources must be added at each angle ¢ for which the total field is
calculated. Thus, for two dissimilar sources 1 and 2 situated on the z
axis with source 1 at the origin and the sources separated by a distance d
(sane geometry as Fig. 4-6) the total field is in general

E=E + E = E, V[f(¢) + aF(¢) cos ¢ + [aF(¢) sin ¢]°

where the field from source 1 is taken as

E, = E, fé) / f,(®) (4-38)
and from source 2 as

E, = aE, F(¢) /F,(¢) + d, cos¢ + & (4-39)

where E, = constant
a = ratio of maximum amplitude of source 2 to source 1
0<a<
¢ =d,cos¢ + 8§ — [,(@) + F,(¢), where
8 = relative phase of source 2 with respect to source 1
f(#) = relative field pattern of source 1
f»(¢) = phase pattern of source 1
F(¢) = relative field pattern of source 2
F,(¢) = phase pattern of source 2
In (4-37) the phase angle (Z£) is referred to the phase of the field from
source 1 in some reference direction (¢ = ¢,)-

Rather than perform the calculation of (4-37), it is usually much easier
to find the amplitude and phase of the total field by a graphical vector
addition of F, and E,. In the special case where the field patterns are
identical but the phase patterns are not, @ = 1, and
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f¢) = F(¢) (4-40)

from which

E = 25, f(¢) cos ¥ / o) + & (4-41)

where phase is again referred to source 1 in some reference direction ¢,.

50°
i80° ) Sy

270°
Fr3. 4-15. Relation of two nonisotropic  Frc. 4-16. Field pattern of array of two
dissimilar sources to coordinate system. nonisotropic dissimilar sources of Fig. 4-

15 for d = A/4 and & = 90°.

+360°
«u: -
= +270°
[=
<
QL
& +180°}-
e
(=N
T +90°L
2

o° 1 1 ) J
o 90° 180° 270° 360°
1]

Fig. 4-17. Phase pattern of array having field pattern of Fig. 4-16. The phase angle
£ is with respect to source 1 as phase center.

As an illustration of nonisotropie, dissimilar point sources, let us con-
sider an example in which the field from source 1 is given by

E, = cos ¢ /0 (4-12)
and from source 2 by

E,=sin ¢ /¢ (4-43)
where ¢ = d, cos¢ + o
The relation of the two sources to the coordinate system and the individual
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field patterns are shown in Fig. 4-15. Source 1 is located at the origin.
The total field E is then the vector sum of ¥, and K, or

= cos ¢ + sin ¢ Y (4-44)

Let us consider the case for i-wavelength spacing (d = A/4) and phase
quadrature of the sources (6 = x/2). Then

¥ =75 (os ¢+ 1) (4-45)

The calculation for this case is most easily carried out as a graphical
vector addition. The resulting field pattern for the total field £ of the
array is presented in Fig. 4-16, and the resulting phase pattern for the
angle ¢ is given in Fig. 4-17. The angle ¥ is the phase angle between the
total field and the field of source 1 in the direction ¢ = 0.

4-6. a. Linear Arrays of n Isotropic Point Sources of Equal Amplitude
and Spacing." Let us now proceed to the case of n isotropic point sources
of equal amplitude and spacing arranged as a linear array, as indicated

in Fig. 4-18, where 7 is any positive
8-90° integer. The total field E at a large
distance in the direction ¢ is given by

To distont point E=1+ e’ -+ P
+63i\0 + .. + ei(n—l)\b (4-4:6)

where ¢ is the total phase difference
of the fields from adjacent sources

5 o as given by
F1a. 4-18. Arrangement of linear array
of n isotropie point sources. ¥ = d.cos¢ + 9 (4-460)

where & is the phase difference of
adjacent sources. In the case under consideration this phase difference can
assume any value. The amplitudes of the fields from the sources are all
equal and taken as unity. Source 1 (Fig. 4-18) is the phase center so that
the field from source 2 is advanced in phase by ¢; the field from source 3 is
advanced by 2y, etc.

Equation (4-46) is a geometric series. Each term represents a vector,
and the amplitude of the total field £ and its phase angle ¢ can be ob-
tained by a graphical vector addition as in Fig. 4-19. However, a very
simple trigonometric expression for ¥ can be developed as follows:

1S. A. Schelkunoff, “Electromagnetic Waves,”” D. Van Nostrand Company, Inc.,
New York, 1943, p. 342.

J. A. Stratton, “Electromagnetic Theory,” McGraw-Hill Book Company, Inc.,
New York, 1941, p. 451.
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Multiply {4-46) by e'*, giving

Eei'i — ei\‘ + eiZ\b + ei.’i\b + C e + einu’l (4_47)
Now subtract (4-47) from (4-46), and divide by 1 — ¢'*, yielding
_ 1= (4-48)
1 —_ ei\b

Equation (4-148) may be rewritten as

2

,'_'L‘Z[,'l\&_ _,'_"_t
e = g2 —e

E=—"\""7" (4-49)
€z | 'z —¢ 'z
from which
E —_ eff sin (n‘///2) _ s (n¢/2) /s (4_50)

sin (¥/2) ~ sin (y/2) =

where £ is referred to the field from source 1. The value of £ is given by

f="5— (4-50a)

If the phase is referred to the center point of the array (4-50) becomes

_ sin (ny/2)
~ sin (/2)

in this case the phase pattern is a step function as given by the sign of

(4-51)

{a)

(b)
#ig. 418, (a) Vector addition of fields at a large distance from linear array of five
isotropic point sources of equal amplitude with source 1 as the phase center (reference
for phase’  (b) Same, but with mid-point of array (source 3) as phase center.
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(4-51). The phase of the field is constant wherever E has a value but
changes by 180°® in directions for which E = 0 (null directions) and (4-51)
changes sign.

When ¢ = 0 (4-50) or (4-51) is indeterminate so that for this case E
must be obtained as the limit of (4-51) as ¢ approaches zero. Thus, for
¥ = 0 we have the relation that

E=n

This is the maximum value which K can attain. Hence, the normalized
value of the total field for E .. = nis

_ 1sin (ny/2)
" n sin (y/2)

The field as given by (4-52) will be referred to as the “array factor.”
Values of the array factor as obtained from (4-52) for various numbers of

(4-52)

NN

NAYN NI

2 INNRAERN N

SALNNNNANEELN

LN T NN

SN EARERY \

5'.3 AT \ \‘ \\ \4\ |

2 \ 2 AR AN :‘E‘></\—/>‘\< 5
VAWARNAZ Y e

T VAL AN DN A2

00 10" 20° 30- 40" 50° 60° 70° 80 90° 100 WO% i20° 1307 140° 150° 160° 170° 180°
360° 350° 340° 330° 320° 310° 300° 290° 280"+270° 260° 250° 240° 230° 220° 210° 200° 190° 180°
Yy

Frc. 420. Universal field-pattern chart for arrays of various numbers n of isotropic
paint sources of equal amplitude and spacing. Charts for all integral values of n from
1 through 24 are included in the Appendix.

sources are presented in Fig. 4-20." If ¢ is known as a function of ¢, then
the field pattern can be obtained directly from Fig. 4-20.

We may conclude from the above discussion that the ficld from the
array will be a maximum in any direction ¢ for which ¢ = 0. Stated in
another way, the fields from the sources all arrive at a distant point in
the same phase when ¢ = 0. In special cases, ¥ may not be zero for any

1 Universal pattern charts giving the array factor as a function of ¢ for all integral
values of n from 1 through 24 are included in the Appendix.
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value of ¢, and in this case the field is usually a maximum at the minimum
value of .

To illustrate some of the properties of linear arrays equation (4-52) will
now be applied to several special cases.

Case 1. Broadside array (sources in phase). The first case is a linear
array of n isotropic sources of the same amplitude and phase. Therefore,
5 = 0, and

¥ =d, cos ¢ (4-53)

To make ¢ = O requires that ¢ = (2k + 1)(x/2), where k. = 0,1, 2,3...
The field is, therefore, a maximum when

That is, the maximum field is in a direction normal to the array. Hence,
this condition, which is characterized by in-phase sources (6 = 0), results
in a “broadside’ type of array.

As an example, the pattern of a broadside array of four in-phase isotropic
point sources of equal amplitude is shown in Fig. 4-21a. The spacing
between sources is 4 wavelength. The field pattern in rectangular co-
ordinates and the phase patterns for this array are presented in Fig. 4-21b.

The calculation of the field pattern of this or other arrays is facilitated
by first calculating and plotting ¢ as a function of ¢. Then by means
of this graph and one of the array factor vs. ¢ for the appropriate num-
ber of sources (as in Fig. 4-20), the array factor E is obtained for any
value of ¢ in two steps.

The range of ¥ as a function of ¢ for the broadside array of four isotropic
sources spaced i wavelength is +180° to —180° and back again for a
variation of ¢ from 0° to 360°. That is,

¢ ¥

0° 180°
900 00
180° —180°
270° 0°
360° 180°

On Fig. 4-20 ¢ completes two cycles of values from 180° to 0° and back
0 180° for a variation of ¢ from 0° to 360°.

Case 2. Ordinary end-fire array. Let us now find the phase angle be-
tween adjacent sources that is required to make the field a maximum in
the direction of the array (¢ = 0). An array of this type may be called
an “end-fire” array. For this we substitute the conditions ¢y = 0 and

o = 0 into (446a), from which
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Hence, for an end-fire array, the phase between sources is retarded pro-
gressively by the same amount as the spacing between sources in radians.
Thus, if the spacing is } wavelength, source 2 in Fig. 4-18 should lag
source 1 by 90°; source 3 should lag source 2 by 90°, etc.

% =90°
\ew//
)
d.,d  d
180 —— ———t—o——h=0
) 2 3 4
Array
Field a
pattern ( )
1e
IE
0 1 $ 1
L b /
of 1 -
+30 ~~. RN // ) L
M [ AN ; ) L
Oe_ \\ ] N 7 ! ”,
N \ [« Phose center / .
“ws at mid-point 4
< ~90°% AN of array o
o
5 -180° . -
[ ] i
P ) )
2 -270% f+ Phase center \
a 4 of source ) ) (b)
B-3607} A ‘
'6 \\ é
(= Ny L’
-450° I Sante~? £ '
o 90 180° 270° 260"

F16. 4-21. (a) Field pattern of broadside array of four isotropic point sources of same
amplitude and phase. The spacing between sources in § wavelength. (b) Field pattern
in rectangular coordinates and phase patterns of same array with phase center at mid-
point and at source 1. The reference direction for phase is taken at ¢ = 90°.

As an example, the field pattern of an end-fire array of four isotropic
point sources is presented in Fig. 4-22a. The spacing between sources is
1 wavelength, and § = —=. The field pattern in rectangular coordinates
and the phase patterns are shown in Fig. 4-22b. The same shape of field
pattern is obtained in this case if § = - since with d = A/2 the pattern
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is bidirectional. However, if the spacing is less than A/2, the majximl.lm
radiation is in the direction ¢ = 0 when § = —d, and in the direction
¢ = 180° when 8 = 4.

¢=’90°
180° 20 @=0°
. (@)
\ 22703, 4 Field pattern
Y '* L. LA
Array P A R d—-é-
1
IEl
0 ‘ ~!
+180°"
+90 Phase center ot
mid-point of array
0] AN e =
* RN A
@ Ay i N / ] //
_g—\ ~30° SOt \ { V,
S i T Phase center J v
§ -180° ! at source 1 : (b)
< ! N A '
S-er0°k AN S
o N N .7 1 7
5 . ! ST [Rd
=360 \} ) L/
_ o ! | L - .
450 90 180° 270° 360
@
Fra. 4-22. (a) Field pattern of ordinary end-fire array of four isotropic point sources
of same amplitude. Spacing is } wavelength, and the phase angle § = —=r. (b) Field

pattern in rectangular coordinates and phase patterns of same array with phase center
at mid-point and at source 1. The reference direction for phaseisat¢ = 0.

Case 3. End-fire array with increased directivity. The situation discussed
in Case 2, namely, for 8 = —d,, produces a maximum field in the direction
¢ = 0 but does not give the maximum directivity. It has been shown by
Hansen and Woodyard' that a larger directivity is obtained by increasing
the phase change between sources so that

5= —(d, + g) (4-55)

1W. W. Hansen and J. R. Woodyard, A New Principle in Directional Antenna
Design, Proc. I.R.E., 26, March, 1938, 333-345.
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This condition will be referred to as the condition for “increased direc-
tivity.” Thus for the phase difference of the fields at a large distance
we have

¥=dlcosp— 1)~ (4-56)

As an example, the field pattern of an end-fire array of four isotropic
point sources for this case is illustrated in Fig. 4-23. The spacing between

90°

‘ 8 00 o.

fedofedatedo d=
R S 2
I 2 3 4
Array
Fia. 4-23. Field pattern of end-fire array of four isotropic point sources of equal
amplitude spaced % wavelength apart. The phasing is adjusted for increased di-
rectivity (8 = —%w).

sources is ¥ wavelength, and therefore 8 = —(5x/4). Hence, the condi-
tions are the same as for the array with the pattern of Fig. 4-22, except
that the phase difference between sources is increased by =/4. Comparing
the field patterns of Figs. 4-22a and 4-23, it is apparent that the additional
phase difference yields a considerably sharper main lobe in the direction
¢ = 0. However, the back lobes in this case are excessively large because
the large value of spacing results in too great a range in .

To realize the directivity increase afforded by the additional phase
difference requires that | ¢ | be restricted in its range to a value of #/n at
¢ = 0 and a value in the vicinity of = at ¢ = 180°. This ean be fulfilled
if the spacing is reduced. For example, the field pattern of an end-fire
array of 10 isotropic point sources of equal amplitude and spaced  wave-
length is presented in Fig. 4-24a for the phase condition giving increased
directivity (8 = —0.6x). In contrast to this pattern, one is presented in
Fig. 4-24b for the identical antenna with the phasing of an ordinary end-
fire array (5 = —0.5r). Both patterns are plotted to the same maximum.

....
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The increased directivity is apparent from the greater sharpness of the
upper pattern. Integrating the pattern, including the minor lobes, the
directivity of the upper pattern is found to be about 19 and of the lower
pattern about 11. The beam widths and directivities for the two patterns
are compared in Table 4-1.

TABLE 4-1

Endfire with

Ordinary endfire increased directivity

Beam width between half-power points 68° 37°
Beam width between first nulls........ 106° 74°
Direetivity........ ... 11 19

The maximum of the field pattern
of Fig. 4-24a occurs at ¢ = 0 and
¢y = —=x/n. In general, any in-
creased directivity end-fire array,
with maximum at ¢ = —n/n, hasa
normalized field pattern given by

sin (ny¢/2) 334
in (9/2) (4-56a) (1

Case 4. Array with mazximum field
in an arbitrary direction. Let us
congider the case of an array with a
field pattern having a maximum in
some arbitrary direction ¢, not equal
to kx/2 where k = 0, 1, 2, or 3. (b)

Then (4-46a) becomes F1c. 4-24. Field patterns of end-fire ar-

_ rays of 10 isotropic point sources of equal
0 =d, cos¢,+ 8 (4-57) amplitude spaced } wavelength apart.

e ing d.. the re- The pattern at (a) has the phase adjusted
By specifying the spacing d,, the re for increased directivity (5 = —0.6x),

quired phase difference & is then de- while the pattern at (b) has the phasing of

termined by (4-57). an ordinary end-fire array (8 = —0.5 ).
Asan example suppose that n = 4,

d = A\/2 and that we wish to have a maximum field in the direction of

¢ = 60°. Then § = —=/2, yielding the field pattern shown in Fig. 4-25.
4-6. b. Null Directions for Arrays of n Isotropic Point Sources of Equal

Amplitude and Spacing. In this section simple methods are discussed for

finding the directions of the pattern nulls of the arrays considered in

See. 4-6a.

(a)

pen
ton
a
s
*0
s

E = sin (x/2n)

(-9
ol
al
a
]
Fbd
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Following the procedure given by Schelkunoff’, the null directions for
an array of n isotropic point sources of equal amplitude and spaeing occur
wher E = 0 or, provided that the denominator of (4-48) is not zero, when

e =1 (4-58)
Fquation (4-58) requires that
ny = +=2Knr (4-59)
where K = 1,2,3...

270° 300°

Fig. 4-25. Field pattern of array of four isotropic point sources of equal amplitude
with phasing adjusted to give maximum at ¢ = 60°. The spacing is 3 wavelength.

Equating the value of ¢ in (4-59) to its value in (4-46a) gives
2K~

Yy =d, cos¢,+ 5 = :i:T (4-60)
Thus, _
_ 2Kr )1_ ]
¢p = arccos |:(:i: " ) 3 (4-61)
where ¢, gives the direction of the pattern nulls. Note that values of K
must be excluded for which K = mn, where m = 1, 2, 3, ... Thus, if

K = mn, Eq. (4-59) reduces to ¢y = +2mm and the denominator of (4-48)

1S. A. Schelkunoff, ‘“Electromagnetic Waves,” D. Van Nostrand Company, Inc.,
New York, 1943, p. 343.

S. A. Schelkunoff, “A Mathematical Theory of Arrays,” Bell System Tech. J., 22,
80-107, January. 1943
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equals zero so that the null condition of (4-58), that the numerator of
{4-48; be zero, is insuflicient.
In a broadside array § = 0, so that for this case (4-61) becomes

¢o = arccos (:tigzr) = arecos (:t%) (4-62)

As an example, the field pattern of Fig. 4-21 (n = 4, d = A/2, 6 = 0)
has the null directions

¢o = arccos <i§'> (4-63)
For K = 1, ¢y = £60° and +120° and for K = 2, ¢, = 0° and 180°.
These are the six null directions for this array.

If ¢, in (4-60) is replaced by its complementary angle v, (see Fig. 4-18),
then (4-62) becomes

. K
Yo = arcsin <:’:77d§> (4-64)

If the array is long, so that nd > KA,

K\
Yo = :{:’r—ﬂT (4-65)
The first nulls either side of the maximum occur for K = 1. These angles

will be designated v,,. Thus,
A
Yor = inTi (4-66)

and the total beam width of the main lobe between first nulls for a long
broadside array is then

2
ZyoL o nd (4-67)

For the field pattern in Fig. 4-21 this width is exactly 60°, while as given
by (4-67) it 1s 1 rad, or 57.3°. This pattern is for an array 2 wavelengths
long. The agreement would be better with longer arrays.

Turning next to end-fire arrays, the condition for an ordinary end-fire

arrgy is that ¢ = —d,. Thus, for this case (4-60) becomes
2K~ .
cos ¢ — 1 = :!:;dj (4-67a,'
from which we obtain
%3 = aresin :t\/ ;IL((lF (4-67b)
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. R |
¢o = 2 arcsin ond (4-67¢c)

As an example, the field pattern of Fig. 4-22 (n = 4, d = A4/2, 8 = —x)
has the null directions

or

¢o = 2 arcsin :l:\/‘iK (4-67d)

For K = 1, ¢y = £60°; for K = 2, ¢, = £90° etc.
If the array is long, so that »d > KX\, (4-67¢) becomes

2K\
bo = £ /Td‘ (4-68)

The first nuils either side of the main lobe occur for K = 1. These angles
will be designated ¢,,. Thus,

2 A
P01 =~ =+ nd (4-69)
and the total beam width of the main lobe between first nulls for a long

ordinary end-fire array is then,

2N
2 bor = 24 /E (4-70)

For the field pattern in Fig. 4-22 this width is exactly 120°, while as given
by (4-70) it is 2 rad, or 115°.

For end-five arrays with increased directivity as proposed by Hansen
and Woodyard, the condition is that § = —(d, + =/n). Thus, for this
case (4-60) becomes

K .
d.(cos ¢y — 1) — :‘: = :l:2-n—1r (4-71)
from which
$o — . s _ )
g = arcsin 4 {2 o, 2K ~ 1) (4-72)
or

¢o = 2 arcsin - 4 /ﬁ‘ﬁ @K — 1) (4-73)

If the array is long, so that nd >> KA\, (4-73) becomes

o = 4 /n—):i @K — 1) (4-74)

The first nulls either side of the main Iobe, ¢, oceur for K = 1. Thus,

b0y == :{ZJ;% (4'75)

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



Sec. 4-6] ARRAYS OF POINT SOURCES 87

and the total beam width of the main lobe between first nulls for a long
end-fire array with increased directivity is then

A
2oy 2\/7—; (4-76)

This width is 1/+/ 5, or 71 per cent, of the width of the ordinary end-fire
array. As an example, the ordinary end-fire array pattern of Fig. 4-24b
has a beam width between first nulls of 106°. The width of the pattern
in Fig. 4-24a for the array with increased directivity is 74°, or 70 per
cent as much.

Table 4-2 lists the formulas for null directions and beam widths for
the different arrays considered above. The null directions in column 2
apply to arrays of any length. The formulas in the third and fourth
columns are approximate and apply only to long arrays.

TABLE 4-2

NULL DIRECTIONS AND BEAM WIDTHS BETWEEN FIRST NULLS
FOR LINEAR ARRAYS OF n ISOTROPIC POINT SOURCES
OF EQUAL AMPLITUDE AND SPACING

(The angles are expressed in radians. To convert to degrees, multiply by 57.3)

Beam width
Type of Null directions Null directions  |between first
array (array any length) (long array) nulls
(long array)
General bo= arc S[(:t2K7r_ 6)1~:|
case 0™ 8reco n d,

. . KA K\ 2
Broadside {y,= arcsm(:t;z—d—) ‘Yoﬁ:izﬁ 2701——@
Ordinary _ . KN ~ 2K\ o 2N

endfire $o= 2 arcsin =+ ond Gomat nd Ko =2 nd
Endfire

with in-

creased di-

rectivity - : A o ~ A _ ~o. |
(Hansen ¢n 2 arcsin & 4 @K ¢o_i\/n (2K —1) 26022 /n ¥
and Wood-

yard)
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The formulas in Table 4-2 have been used to calculate the curves pre-
sented in Fig. 4-26. These curves show the beam width between first
nulls as a function of nd, for three types of arrays: broadside, ordinary

200°

150° \

100”]

/A

rdinary end-fire

€nd-fire with

50°
R

Beam width between first nulls

%

d directivity]

10 20 50 100

n da
(opprox. array length)

F1c. 4-26. Beam width between first nulls as a function of ndy for arrays of n isotropic
point sources of equal amplitude. For long arrays, ndy is approximately equal to the

array length.

end-fire, and end-fire with increased directivity.

The quantity nd,

(= nd/)) is approximately equal to the length of the array in wavelengths
for long arrays. The exact value of the array length is (n — 1) d,.
The beam width of long broadside arrays is inversely proportional to

Y

Z

Fia. 4-27. Volume array of point sources
with equal spacing in the three coordinate
directions.

the array length, whereas the beam
width of long end-fire types is in-
versely proportional to the square
root of the array length. Hence, the
beam width in the plane of a long

_linear broadside array is much

smaller than for end-fire types of the
same length as shown by Fig. 4-26.
It should be noted, however, that
the broadside array has a disc-
shaped pattern with a narrow beam
width in a plane through the array
axis but a circular pattern (360°
beam width) in the plane normal to

the array axis. On the other hand, the end-fire array has a cigar-shaped
pattern with the same beam width in all planes through the array axis.
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4-6. ¢. Some Remarks on Volume Arrays. It is interesting to digress at
this point to consider the possibilities and limitations of a volume dis-
tribution' of equally spaced point sources. Suppose we have a space
array consisting of linear arrays of n,, n,, and =, sources in the three co-
‘ordinate directions. For equal spacing in the three coordinate directions,
the case where n, = 5, n, = 3, and n, = 2 is illustrated in Fig. 4-27. If
the field patterns of the arrays in each coordinate direction are E.(6, ¢),
E,(9, ¢), and E.(6, ¢) then by the principle of pattern multiplication the
total array factor E, of a volume distribution of isotropic point sources is

E(8,¢) = E.(6, $)E.(6, $)E.(6, ¢) 477)

Suppose that we wish to have maximum radiation in the +z direction.
Then the arrays in the y and z directions are broadside arrays while the
array in the z direction is an end-fire array. The pattern in the z-y plane
E., depends only on the x and y arrays. Thus,

Ezv = E’:(Oy ¢)Ev(07 ¢) (4'78)

The pattern in the z-z plane, E.,, depends only on the z and z arrays, so
that
En = E:(oy ¢)El(07 ¢) : (4'79)

If in (4-78) E,(8, ¢) is much sharper than E_(9, ¢), then E,, is nearly
equal to E,(6, ¢). To have an appreciable effect on E,,, E.(6, ¢) must
be approximately as sharp as F,(6, ¢). That is to say, a sharp pattern
must be multiplied by a pattern nearly as sharp in order to be made
appreciably sharper. Therefore, if the y array is much sharper than the
z array, one might as well use only the y array. On the other hand if
the z array is much sharper, then one might as well use ounly the z array.
For both to contribute equally it is required that both be equally sharp,
or that

E’,(B, ¢) = E’v(oy ¢) (4-'80)

Similar remarks may be made concerning the pattern in the z-z plane
as related to the z and z arrays. It follows that, for equal patterns in
the z-y and z-z planes, we must make

Ny = N,

if the spacing between sources is the same in both arrays. If the y and 2
arrays are, for example, 10 wavelengths long [(n, — 1)d = 10 )], then
the z array must be nearly 100 wavelengths long to have much effect on
the beam width of the main lobe. However, a small z array may be de-

'G. C. Southworth, Certain Factors Affecting the Gain of Directive Antennas,
Proc, I.R.E., 18, 1502-1536, September, 1930.
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gsirable in order to obtain a unidirectional pattern in the x direction.
Assuming now that the z array is unidirectional, then any greater length
would not produce much effect on the main-lobe beam width unless it is
of the order of 100 wavelengths. An z array less than 100 wavelengths
long would, nevertheless, have some effect on the directivity because of
the change it produces in the minor-lobe pattern. From these considera-
tions it is apparent that broadside-area arrays are generally to be preferred
over single linear end-fire types for pencil beams, since they require smaller
maximum dimensions. However, for arrays of moderate directivity with
dimensions of a few wavelengths or less these remarks do not necessarily
apply.

4-6. d. Directions of Maxima for Arrays of n Isotropic Point Sources of
Equal Amplitude and Spacing. Let us now proceed to a discussion of the
methods for locating the positions of the pattern maxima. The major-
lobe maximum usually occurs when ¢ = 0. This is the case for the broad-
side or ordinary end-fire array. The main lobes of the broadside array
are then at ¢ = 90° and 270°, while for the ordinary end fire the main lobe
is at 0° or 180° or both. For the end-fire array with increased directivity
the main-lobe maximum occurs at a value of ¢y = -r/n with the main
lobe at 0° or 180°. Referring to Fig. 4-24q, the main-lobe maximum (first
maximum) for this case occurs at the first maximum of the numerator of
(4-51).

The maxima of the minor lobes are situated between the first- and
higher-order nulls. It has been pointed out by Schelkunoff that these
maxima occur approximately whenever the numerator of (4-51) is a
maximum, that is, when

sinnz_"b =1 (4-81)
Referring to Fig. 4-28, we note that the numerator of (4-51) varies as a
function of ¢ more rapidly than the denominator sin (¢/2). This is

especially true when n is large. Thus, although the nulls occur exactly

where sin (ny/2) = 0, the maxima occur approximately where sin
(ny/2) = 1. This condition requires that
Mo x@K+ 1] (4-82)

where K = 1,2,3 ...
Substituting the value of ¢ from (4-82) into (4-46a) gives

£(@2K + D
n

d, cos ¢, + & = (4-83)

Therefore
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G O ArCCos {[;—@—Kf—l)l — {lolf-} (4-84)

where ¢,, = direction of the minor-lobe maxima
For a broadside array, 8 = 0 so that (4-84) becomes

+(2K + DA
2nd

As an example, the field pattern of Fig. 4-21 (n = 4, d = ©\/2, 5 = Q)
has the minor-lobe maxima at

m = arccos

(4-85)

+(2K + 1)
4

For K = 1, ¢, = +41.4° and £138.6°. These are the approximate
directions for the maxima of the four minor lobes of this pattern.

¢ O ATCCOS (4-86)

+i

e
sz

——F—F——

}._.__ — -

Second null ————

¥=180"

s
N
}_e.

}
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o > ° % 2
2.2 yeds_ 25 gF
Q@0 iy U-=°>3 Ea el
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Fre. 4-28. Graphs of the numerator (sin ny/2) and denominator (sin ¢/2) of the
array factor as functions of ¥, showing the values of ¢ corresponding to maxima and
nulls of a field pattern for the case n = 8.

For an ordinary end-fire array § = —d, so that (4-84) becomes

+(2K + 1A + 1]

Om =~ Arccos [ o]

(4-87)
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while, for an end-fire array with increased directivity, § = —(d, + =/n) and

= ATCCOS {2—"@ [+ QK + 1] + 1} (4-88)

The above formulas for the approximate location of the minor lobe
maxima are listed in Table 4-3.

TABLE 4-3

DIRECTIONS OF MINOR-LOBE MAXIMA FOR LINEAR ARRAYS OF =
ISOTROPIC POINT SOURCES OF EQUAL AMPLITUDE AND SPACING

Type of array \ Directions of minor-lobe maxima
General ¢mzarccos{[i(2K+ Dr _ 6]—1‘}
n d,
Broadside . ~arccos EEETDA
2nd
Ordinary endfire mzarccos[—i (2K+ 1A + 1:|
2nd
Endfire with increased directivity ~ A
(Hansen and Woodyard) ¢,,.—arccos{2nd[1:|: (ZEK+DI+ 1}

The amplitudes of the field at the minor-lobe maxima are also of interest.
[t has been shown by Schelkunoff that since the numerator of (4-52) is
approximately unity at the maximum of a minor lobe, the relative ampli-
tude of a minor-lobe maximum E,,, is given by

1

E ML = m (4-89)
Introducing the value of § from (4-82) into (4-89) yields
E ML 1 (4.'90)

=~ nsin [(2K + Dn/2n]

When n > K, that is, for the first few minor lobes of an array of a large
number of sources, we have the further approximation

2

Eyy =~ (—21‘{‘_*_——1—); (4-91)
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Thus, for arrays of a large number of sources the relative amplitude
of the first few minor lobes is given by (4-91) for K = 1, 2, 3, etc. In a
broadside or ordinary end-fire array, the major-lobe maximum is unity
so that the relative amplitudes of the maximum and first five minor lobes
for arrays of these types and many sources are 1, 0.21, 0.13, 0.09, 0.07,
and 0.06. From the curve for n = 20 in Fig. 4-20 we have the corre-
sponding relative amplitudes given by 1, 0.22, 0.13, 0.09, 0.07, and 0.06.
TFor an end-fire array with increased directivity the maximum for ¢ = 0
and n = 20 occurs at ¢ = 7/20 = 9°. At this value of ¢ the array factor
is 0.63. Putting the maximum equal to unity then makes the relative
amplitudes 1, 0.35, 0.21, 0.14, 0.11, and 0.09. It is interesting to note
in (4-90) that the maximum amplitude of the smallest minor lobe oceurs
for 2K + 1 = n. Then

. [ (2K + 1)1] _
sin [ on =1 (4-92)
and
1 1
By >~= (4-93)

The condition 2K + 1 = n is exactly fulfilled when = is odd for the minor-
lobe maximum at ¢ = 180° (see Fig. 4-20). When = is even, the condition
is approximately fulfilled by the minor lobes nearest ¢y = 180°. Thus,
the maximum amplitude of the smallest minor lobe of the field pattern of
any array of n isotropic point sources of equal amplitude and spacing will
never be less than 1/n of the major-lobe maximum. An exception to this
is where the range of  ends after a null in the array factor has been passed
but before the next maximum has been reached. In this case the maximum
of the smallest minor lobe may be arbitrarily small.

4-7. Linear Broadside Arrays with Nonuniform Amplitude Distribu-
tions. General Considerations. In the preceding section, our discussion
was limited to linear arrays of n isotropic sources of equal amplitude.
This discussion will now be extended to the more general case where the
amplitude distribution may be nonuniform. In introducing this subject,
it is instructive to compare field patterns of four types of amplitude dis-
tributions, namely, uniform, binomial, edge, and optimum. To be specific,
let us consider a linear array of five isotropic point sources with 3 wave-
length spacing. If the sources are in phase and all equal in amplitude,
we may calculate the pattern as discussed in See. 4-6, the result being as
shown in Fig4-29 by the pattern designated uniform. A uniform dis-
tribution yields the maximum directivity. The pattern has a half-power
beam width of 23° but the minor lobes are relatively large. The ampli-
tude of the first minor lobe is 24 per cent of the major-lobe maximum (see
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Fig. 4-20, n = 5). In some applications this minordobe amplitude may
be undesirably large.

23° 31° 27%
Uniform Binomial Optimum
LI Jll. sl
11111 14641 1161916 1

Edge

1 o000 1

10001
Fi6. 4-29. Normalized field patterns of broadside arrays of five isotropic point sources
spaced } wavelength apart. All sources are in the same phase, but the relative ampli-
tudes have four different distributions: uniform, binomial, optimum, and edge. Only
the upper half of the pattern is shown. The relative amplitudes of the five sources
are indicated in each case by the array below the pattern, the height of the line at each
source being proportional to its amplitude. All patterns are adjusted to the same
maximum amplitude.

To reduce the side-lobe level of linear in-phase broadside arrays, John
Stone Stone' proposed that the sources have amplitudes proportional to
the coefficients of a binomial series of the form

@+ v '=a" "+ m— 1a"% + ("_—-L)z({?;?l a™ VB + .. (4-94)

1 John Stone Stone, U.S. Patents 1,643,323 and 1,715,433.
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where n is the number of sources.* Thus, for arrays of three to six sources
the relative amplitudes are given by

n Relalive amplitudes
3 1,21

4 1,331

5 1,4,6,4,1

6 1, 5, 10, 10, 5, 1

y »

Applying the binomial distribution to the array of five sources spaced
1 wavelength apart, the sources have the relative amplitudes 1, 4, 6, 4, 1.
The resulting pattern, designated binomzial, is shown in Fig. 4-29. Methods
of calculating such patterns are discussed in the next section. The pattern
has no minor lobes, but this has been achieved at the expense of an in-
creased beam width (31°). For spacings of 1 wavelength or less between
elements, the minor lobes are eliminated by Stone’s binomial distribution.
However, the increased beam width and the large ratio of current ampli-
tudes required in large arrays are disadvantages.

At the other extreme from the binomial distribution, we might try an
edge distribution in which only the end sources of the array are supplied
with power, the three central sources being either omitted or inactive.
The relative amplitudes of the five-source array are, accordingly, 1, 0,
0, 0, 1. The array has, therefore, degenerated to two sources 2 wave-
lengths apart and has the field pattern designated as edge in Fig. 4-29,
The beam width between half-power points of the ‘“main” lobe (normal
to the array) is 15°, but ‘“minor” lobes are the same amplitude as the
“main’’ lobe.

Comparing the binomial and edge distributions for the five-source array
with 3-wavelength spacing, we have

o 3-power Minor-lobe amplitude
Type of distribution beamwidth (% of major lobe)
Binomial........... ... .o oo 31° 0
Edge.....ovvviiiniii 15° 100

Although for most applications it would be desirable to combine the
15° beam width of the edge distribution with the zero minor-lobe level
of the binomijal distribution, this combination is not possible. However,
if the distribution is between the binomial and the edge type, a compromise
between the beam width and the side-lobe level can be made. That is,
the side-lobe level will not be zero, but the beam width will be less than

*The coefficients of the binomial series are very simply obtained from Pascal’s
triangle (see Appendix),
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for the binomial distribution. An amplitude distribution of this nature
for linear in-phase broadside arrays has been proposed by Dolph® which
has the further property of optimizing the relation between beam width
and side-lobe level. That is, if the side-lobe level is specified, the beam
width between first nulls is minimized; or, conversely, if the beam width
between first nulls is specified, the side-lobe level is minimized. Dolph’s
distribution is based on the properties of the Tchebyscheff polynomials
and accordingly will be referred to as the Dolph-Tchebyscheff or optimum
distribution.

Applying the Dolph-Tchebyscheff distribution to our array of five
sources with I-wavelength spacing, let us specify a side-lobe level 20 db
below the main lobe, that is, a minor-lobe amplitude 10 per cent of the
main lobe. The relative amplitude distribution for this side-lobe level is
1, 1.6, 1.9, 1.6, 1 and yields the pattern designated optimum in Fig. 4-29.
Methods of calculating the distribution and pattern are discussed in the
next section. The beam width between half-power points is 27°, which
is less than for the binomial distribution. Smaller beam widths can be
obtained only by raising the side-lobe level. The Dolph-Tchebyscheff dis-
tribution includes all distributions between the binomial and the edge.
In fact, the binomial and edge distributions are special cases of the Dolph-
Tchebyscheff distribution, the binomial distribution corresponding to an
infinite ratio between main- and side-lobe levels and the edge distribution
to a ratio of unity. The uniform distribution is, however, not a special
case of the Dolph-Tchebyscheff distribution.

Referring to Fig. 4-29, we may draw a number of general conclusions
regarding the relation between patterns and amplitude distributions. We
note that if the amplitude tapers to a small value at the edge of the array
(binomial distribution), minor lobes can be eliminated. On the other
hand, if the distribution has an inverse taper with maximum amplitude
at the edges and none at the center of the array (edge distribution), the
minor lobes are accentuated being, in fact, equal to the “main’” lobe.
From this we may quite properly conclude that the minor-lobe level is
closely related to the abruptness with which the amplitude distribution
ends at the edge of the array. An abrupt discontinuity in the distribution
results in large minor lobes, while a gradually tapered distribution ap-
proaching zero at the edge minimizes the discontinuity and the minor
lobes. In the next section, we shall see that the abrupt discontinuity pro-
duces large higher “harmonic” terms in the Fourier series representing

t C. L. Dolph, A Current Distribution for Broadside Arrays Which Optimizes the
Rel ationship between Beam Width and Side-lobe Level, Proc. I.R.E., 34, No. 6, 335-
348, June, 1946.

H. J. Riblet, discussion on Dolph’s Paper, Proc. I.R.E., 36, No. 5, 489-492, May,
1947,
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the pattern. On the other hand, these higher harmonic terms are small
when the distribution tapers gradually to a small value at the edge.
There is an analogy between this situation and the Fourier analysis of
wave shapes. Thus, a square wave has relatively large higher harmonics,
whereas a pure sine wave has none, the square wave being analogous to
the uniform array distribution while the pure sine wave is analogous to
the binomial distribution.

The preceding discussion has been concerned with arrays of discrete
sources separated by finite distances. However, the general conclusions
concerning amplitude distributions which we have drawn can be extended
to large arrays of continuous distributions of an infinite number of point
sources, such as might exist in the case of a continuous current distribu-
tion on a metal sheet or in the case of a continuous field distribution across
the mouth of an electromagnetic horn. If the amplitude distribution
follows. a Gauss error curve, which is similar to a binomial distribution
for discrete sources, then minor lobes are absent but the beam width is
relatively large. An increase of amplitude at the edge reduces the beam
width but results in minor lobes, as we have seen. Thus, in the case of a
high-gain parabolic reflector type of antenna, the illumination of the
reflector by the primary antenna is usually arranged to taper toward the
edge of the parabola. However, a compromise is generally made between
bheam width and side-lobe level so that the illumination is not zero at the
edge but has an appreciable value as in a Dolph-Tchebyscheff distribution.

4-8. Linear Arrays with Nonuniform Amplitude Distributions. The
Dolph-Tchebyscheff Optimum Distribution. In this section linear in-
phase arrays with nonuniform amplitude distributions are analyzed, and
the development and application of the Dolph-Tchebyscheff distribution
are discussed.

Let us consider a linear array of an even number 7, of isotropic point
sources of uniform spacing d arranged as in Fig. 4-30a. All sources are
in the same phase. The direction # = 0 is taken normal to the array
with the origin at the center of the array as shown. The individual sources
have the amplitudes Ao, A, 4., etec., as indicated, the amplitude distri-
bution being symmetrical about the center of the array. The total field
I7,, from the even number of sources at a large distance in a direction 4
is then the sum of the fields of the symmetrical pairs of sources, or

E,, = 24, cos %{: + 24, cos %ﬂ + .- 4+ 24, cos (n, ; 1 \lx> (4-95)
where

y = 2%4sin 6= d, sin 8 (4-96)
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Each term in (4-95) represents the field due to a symmetrically disposed
pair of the sources.
Now let

2k + 1) =n,
where £ = 0, 1, 2,3 ... so that

n,—1_ 241
2 2

Then (4-95) becomes

k=N-1
B, =23 A, cos (%—;——1— ¢> (4-97)

e
k=0

where N = n,/2
Next let us consider the case of a linear array of an odd number ny of

6=0
Even
é
(a)
fe—d—f
*-- - *~— . -~ -
' A, A Ay A, A, A, Ag
@=0
0dd
8 (b
fe—d—f
> m——- e -8- - * — -~ -
A, Ay A, A 28, A A, A, A,

F1c. 4-30. Linear broadside arrays of n isotropic sources with uniform spacing for n
even and n odd.

isotropic point sources of uniform spacing arranged as in Fig. 4-30b.
The amplitude distribution is symmetrical about the center source. The
amplitude of the center source is taken as 24,, the next as 4, the next as
A,, etc. The total field F,, from the odd number of sources at a large
distance in a direction ¢ is then

E. =24,4+ 24, cos ¢y +2A4,cos2¢ + -+ + 24, cos (n° ; 1 yl/) (4-98)
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Now for this case let ;

2k + 1 =m,
where k = 0,1,2, 3.... Then (4-98) becomes

E.. =23 A, cos <2k %) (4-99)

where N = (n, — 1)/2

The series expressed by (4-98) or by (4-99) may be recognized as a
finite Fourier series of N terms." For k = 0 we have a constant term
24, representing the contribution of the center source. For k = 1 we
have the term 24, cos ¢ representing the contribution of the first pair of
sources on either side of the center source. For each higher value of k
we have a higher harmonic term which in each case represents the con-
tribution of a pair of symmetrically disposed sources. Thus, the total
field pattern is simply the sum of a series of terms of increasing order in
the same way that the wave form of an alternating current can be repre-
sented as a Fourier series involving, in general, a constant term, a funda-
mental term, and higher harmonic terms. The field pattern of an even
number of sources as given by (4-95) or (4-97) is also a finite Fourier
series but one which has no constant term and only odd harmonics. The
coefficients A,, A,, . . . in both series are arbitrary and express the ampli-
tude distribution.

To illustrate the Fourier nature of the field-pattern expression, let us
consider the simple example of an array of nine isotropic point sources
spaced § wavelength apart, having the same amplitude and phase. Hence,
the coefficients are related as follows: 24, = A, = 4, = 4, = 4, = %
The number of sources is odd; hence the expression for the field pattern
is then given by (4-99) as

E;, =14 cosy + cos 2y + cos 3y + cos 4y (4-100)

The first term (k = 0) is a constant so that the field pattern is a circle of
amplitude % as shown in Fig. 4-31a. The second term (k = 1) may be
regarded as the fundamental term of the Fourier series and gives the
pattern of the two sources (A, in Fig 4-30b) either side of the center. This
pattern has 4 lobes of maximum amplitude of unity as illustrated in
Fig. 4-31b. The next term (¢ = 2) may be regarded as the second har-
monic term and gives the pattern of the next pair of sources (A4, in Fig.
4-30b). This pattern has 8 lobes as shown by Fig. 4-31c. The last two
terms represent the third and fourth harmonics, and the patterns have

1 Irving Wolff, Determination of the Radiating System Which Will Produce a Speci-
fied Directional Characteristic, Proc, [.R.E., 36, 630-643, May, 1937.
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12 and 16 lobes, respectively, as indicated by Figs. 4-31d and (¢). The

above relations may be summarized as in Table 4-4.

TABLE 44
k Sources Spacing Fourier term Pattern
0 1 0 Constant Circle
1 2 1 Fundamental 4 lobes
2 2 2N 2d harmonie 8 lobes
3 2 3 3d harmonie 12 lobes
4 2 4N 4th harmonic 16 lobes

The algebraic sum of the patterns given by the five terms is the total
far-field pattern of the array which is presented in Fig. 4-31f. If the
middle source of the array has zero amplitude or is omitted, the total
pattern is then the sum of the four terms for which k¥ = 1, 2, 3, and 4.
If in addition the pair of sources A, is omitted, the total pattern is the
sum of three terms for which k¥ = 2, 3, and 4. Since these are higher

Total
pattern

el

Fi1a. 4-31. Resolution of total pattern of array of nine isotropic sources into Fourier
components due to center source and pairs of symmetrically disposed sources. The
relative field pattern of the entire array is shown by (f). The lower halves of patterns
are not shown. (Note that the end-fire lobes are wider than the broadside lobes.)

harmonie terms, we may properly expeet that in this case the minor lobes
of the total pattern will be accentuated. It is apparent from the above
discussion that the field pattern of any symmetrical amplitude distri-
bution can be expressed as a series of the form of (4-97) or (4-99).
Proceeding now to the Dolph-Tchebyscheff amplitude distribution, it
will be shown that the coefficients of the pattern series' can be uniquely
determined so as to produce a pattern of minimum beam width for a

Y Equations (4-95), (4-97), (4-98), and (4-99).
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specified side-lobe level. The first step in the development of the Dolph-
Tchebyscheff distribution is to show that (4-97) and (4-99) can be re-
garded as polynomials of degree n, — 1 and n, — 1, that is, polynomials
of degree equal to the number of sources less 1. In the present discussion
we shall consider only the case of the broadside type of array, that is,
where § = 0. Thus,

v =d, sin0 (4-101)

Now by de Moivre’s theorem,

s _ Vo ;ez( ¥ i) 102)
e —cosm2+]s1nm2 cos2+]sm2 (4-102)
On taking real parts of (4-102) we have
¥ _ ( Yoo z)’"
cos m 5 = Re | cos ) -+ 7sin o (4-103)
Expanding (4-103) as a binomial series gives
_II_/___ mi_m(m—l) m—2£‘2£
Cos M 5 = €0S” 5 — — o CosT  ysin g
+ mlm = 1)(m4'—- 2)(m = 3) ogn-s éﬁsin‘zi — o (4-104)

Putting sin® (¢/2) = 1 — cos’ (¥/2), and substituting particular values
of m, (4-104) then reduces to the following:

m = 0, cosm2£=1
= ¥_ oo ¥
m= 1, €os M 5 = COS g
m= 2 cosm£=2cos2-—1 >
) 5 5 (4-105)
- ¥ s ¥ _ ¥
m = 3, cosm2—4cos2 3cos2
m=4 cosm~'k=8cos"——800sz—+1
’ 2 2 2
ete. )
Now iet
a:—-coi
= cosy (4-105a)
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whereupon the equations of (4-105) become

cosmg=1, when m = 0
cosm£=x, when m = 1
2 g (4-106,
K- cos mg = 2" — 1, when m = 2
ete. J

The polynomials of (4-106) are called Tchebyscheff polynomials, which
may be designated in general by

T.(z) = cos mzi (4-107)
For particular values of m, the first eight Tchebyscheff polynomials are

EN

Tolx) = 1
Tx) ==«
Ty(x) = 22 — 1

Ty(z) = 42* — 3z

T(z) = 8* — 8 + 1

Ts(z) = 16z° — 202> + bz

Ts(z) = 322" — 48z* + 182 — 1
T.x) = 642" — 1122° + 562° — 7z

> (4-108)

We note in (4-108) that the degree of the polynomial i the same as
the value of m.
The roots of the polynomials occur when cos m(y/2) = 0 or when

Yo -1~
my = 2k —1) 2 (4-109)
where b = 1,23, ...
The roots of x, designated ', are thus
r_ — 1 =
z' = cos l:(% 1) 2m] (4-109a)

We have shown that cos m(¥/2) can be expressed as a polynomial of
degree m. Thus, (4-97) and (4-99) are expressible as polynomials of degree
2k + 1 and 2k, respectively, since each are the sums of cosine polynomials
of the form cos m(y/2). For an even number n, of sources 2k + 1 =
n, — 1, while for an odd number n,, 2k = n, — 1. Therefore, (4-97)
and (4-99), which express the field pattern of a symmetric in-phase equi-
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spaced linear array of n isotropic point sources, are polynomials of degree
equal to the number of sources less 1. If we now set the array polynomial
as given by (4-97) or (4-99) equal to the Tchebyscheff polynomial of like
degree (m = n — 1) and equate the array coefficients to the coefficients
of the Tchebyscheff polynomial, then the amplitude distribution given by
these coefficients is a Tchebyscheff distribution and the field pattern of
the array corresponds to the Tchebyscheff polynomial of degree n — 1.

3 i
' Tm(x) !
' +4
T. I,
‘I 5h 4T /
2 g -+3 1] s
\\ \ J T
N \ I s 2
N 42 T
T \\ \ (4 ,/ \
0. N - ¥ S g
-------- Ao szt 2 -
LN < pd S P (o]

. St N A
~ ,5\ s 7 10 ]
= -}

+2
=3
=4

Fra. 4-32. Tchebyscheff polynomials of degree m = 0 through m = 5.

The Tchebyscheff polynomials of degree m = 0 through m = 5 are
presented in Fig. 4-32. Referring to Fig. 4-32, the following properties
of the polynomials are worthy of note:

1. All pass through the point (1, 1).

2. For values of z in the range —1 < 2z < -+ 1, the polynomials all lie
between ordinate values of +1 and —1. All roots occur between
—1 < z € 4+ 1, and all maximum values in this range are 1.

We may now describe Dolph’s method of applying the Tchebyscheff
polynomial to obtain an optimum pattern. Suppose that we have an
array of six sources. The fleld pattern is then a polynomial of degree
5. If this polynomial is equated to the Tchebyscheff polynomial of degree
5, shown in Fig. 4-33, then the optimum pattern may be derived as fol-
lows: Let the ratio of the main-lobe maximum to the minor-lobe level be
specified as B. That is,

_ main-lobe maximum
side-lobe level
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The point (x,, B) on the T;(z) polynomial curve then corresponds to the
main-lobe maximum, while the minor lobes are confined to a maximum
value of 1. The roots of the polynomial correspond to the nulls of the
field pattern. The important property of the Tchebyscheff polynomial is
that if the ratio R is specified the beam width to the first null (x = 21) is
minimized. The corollary also holds that +f the beam width is specified the
ratio R s mazimized (side-lobe level minimized).

? {Xo,R)
Ts (X)
+ a,n
/ -1
| ! l L1
/—x; 0 5 X;/‘l Xo X+
1 ! 1
0 5 W

Fra. 4-33. Tchebyscheff polynomial of fifth degree with relation to coordinate scales.

The procedure will now be summarized. Let us write (4-97) and (4-99j
again. It is to be noted that they are functions of ¢/2. Thus,

k=N—1
E.=2 3 A, cos [(210 + 1) g] (n even) (&-110)
k=0
and
k=N n
E.. =2 ) A, cos (2k 5) (n odd) (4-111)

Since we are usually interested only in the relative field pattern, the
factor 2 before the summation sign in (4-110) and (4-111) may be dropped.
For an array of n sources, the first step is to select the Tchebyscheft
polynomial of the same degree as the array polynomial, (4-110) or (4-111).

This is given by
Tui{2) (4-1122
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where n is the number of sources and m = n — 1. Next we choose R and
solve

Tn(ze) = R (4-113)

for z,. Referring to Fig. 4-33, we note that, for B > 1, z, is also greater
than 1. This presents a difficulty since according to (4-105a) z must be
restricted to the range —1 < z < +1. If, however, a change of scale is
made by introducing a new abscissa w (Fig. 4-33), where

z
w=_ (4-114)
then the restriction of (4-105a) can be fulfilled by putting

w = ¢OS 2£ (4-115)
where now the range of w is restricted to —1 < w < + 1. The pattern
polynomial, (4-110) or (4-111), may now be expressed as a polynomial in
w. The final step is to equate the Tchebyscheff polynomial of (4-112)
and the array polynomial obtained by substituting (4-115) into (4-110) or
(4-111). Thus,

To(x) = E, (4-115a)

The coefficients of the array polynomial are then obtained from (4-115a),
yielding the Dolph-Tchebyscheff amplitude distribution which is an
optimum for the side-lobe level specified.

As a proof of the optimum property of the Tchebyscheff polynomial,
let us consider any other polynomial P(z) of degree 5 which passes through
(x, B) in Fig. 4-33 and the highest root x{ and for all smaller values of z
lies between +1 and —1. If the range in ordinate of P(z) is less than
+1, then this polynomial would give a smaller side-lobe level for this same
beam width, and Ts(x) would not be optimum. Since P(z) lies between
=+1 in the range —2{ < ¢ < 4 z{ it must intersect the curve T;(z) in
at least m 4+ 1 = 6 points, including (z,, B). Two polynomials of the
same degree m which intersect in m - 1 points must be the same poly-
nomial,’ so that

P(z) = Ts(z)
and the T';(z) polynomial is, therefore, the optimum.
If the spacing between sources exceeds 3 wavelength, it should be

1 This follows from the fact that a polynomial of degree m has m + 1 arbitrary
constants. Further, if m + 1 points on the polynomial’s curve are specified, m + 1
independent equations with m 4- 1 unknowns can be written and the m + 1 constants
thereby determinec.
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noted that as the spacing approaches 1 wavelength a large lobe develops
at § = 90° which equals the main lobe when d = X\. However, if the
individual sources of the array are nonisotropic, that is, are directional
with the maximum at § = 0 and with little or no radiation at § = £90°,
then by pattern multiplication the lobes of the total pattern at § = 390°
can be made small.

4-9. Example of Dolph-Tchebyscheff Distribution for an Array of
Eight Sources. To illustrate the method for finding the Dolph-Tcheby-
scheff distribution, let us work the following problem:

An array of n = 8 in-phase isotropic sources, spaced } wavelength
apart, is to have a side-lobe level 26 db below the main-lobe maximum.
Find the amplitude distribution fulfilling this requirement that produces
the minimum beam width between first nulls, and plot the field pattern.

Since

Side-lobe level in db below main-lobe maximum = 20 log,, B (4-115b)
it follows that

R =20 (4-116)
The Tchebyscheff polynomial of degree n — 1 is T,(z). Thus, we set
Ty(zy) = 20 (4-117)

The value of z, may be determined by trial and error from the T,(z)
expansion as given in (4-108), or x, may be calculated from

w=3R®R+ VE - D"+ R~ VE - D" (4118
Substituting B = 20 and m = 7 in (4-118) yields
2o = 1.15 (4-119)
Now substituting (4-115) in (4-110) and dropping the factor 2, we have
Es = Aow + A,(dw’* — 3w) 4+ A.(16w° — 20w* 4+ 5w)
+ A,(64w" — 1120° + 56w® — Tw) (4-120)

But w = z/x, so that making this substitution in (4-120) and grouping
terms of like degree,

B, = 641743 o+ 164, —5112‘43 2+ 44, — 20432 + 564, 2
To %o o (4-121)
n A, — 34, + 54, —Zéx
Zo
The Tchebyscheff polynomial of like degree is
T:(z) = 6427 — 1122° + 562° — 7z (4-122)
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Now equating (4-121) and (4-122)
Ey = Ti(x) (4-123)

For (4-123) to be true requires that the coefficients of (4-121) equal the
coefficients of the terms of like degree in (4-122). Therefore,

64:‘43

oo (4-124)
or
Ay, = 25 = 1.15 = 2.66 (4-125)
In a similar way we find that
A, = 4.56
A, = 6.82 (4-126)
A, = 8.25

The relative amplitudes of the 8 sources are then
1, 1.7, 2.6, 3.1, 3.1, 2.6, 1.7, 1
To obtain the field pattern given by the Dolph-Tchebyscheff distribu-

To point
Jo (115,20)

A
o
A
0=
A
]
=
P
A
N=f=
1
1
L
o -
D
[
o
o — ===
(=

Fic. 4-31. Tchebyscheff polynomial of the seventh degree.

tion, we recall that /2 = (d, sin 6)/2, cos (¥/2) = w, and w = z/z,,
from which
d, sin 8

T = T €08~

(4-127)
The value of z corresponding to a given value of 4, as obtained from

(4-127), is then introduced in the appropriate Tchebyscheff polynomial, in
thig case T,(z), or scaled from a graph of this polynomial, as shown in

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



108

ANTENNAS

[CHAP. 4

Fig. 4-34. The value of the polynomial for this value of z is then the

relative field strength in the direction 4.

In general, as 6 ranges from

—x/2to +7/2, the variables ¢/2, w, and z range as indicated by Table 4-5.

TABLE 4-5
Variable Range

T T

¥ _4 4

2 2 0 + 2

d 1 co! 4

w cos 5 55
d, A
z %o €08 5 Zo 0 €08 %

Thus, in general, as 6 ranges from -—-#/2 to 0 to +«/2, z ranges from
some point, such as a in Fig. 4-34, to z, and back again to a, the ordinate
value giving the relative field intensity.

In our problem, d, = =, and z, = 1.15, so that the range of z is as
shown in Table 4-6.

TABLE 4-6
Variable Range
. T
0 5 0 1 + 2
z 0 1.15 l 0
Hence, at 6 = —90° we start at the origin in Fig. 4-34 (point b), and as

6 approaches 0° we proceed to the right along the polynomial curve reach-
ing the point (x,, B = 1.15, 20) when 6 = 0°. As 6 continues to increase,
we retrace the polynomial curve, reaching the origin when 6 = 90°.
Thus, the pattern is symmetrical about the 8§ = 0° direction.

As a preliminary step to plotting the field pattern, it is usually helpful
to make a plot of z vs. 8 from (4-127). Then, knowing the values of z
for the nulls and maxima of the T,(z) curve, the corresponding values
of # may be determined. As many intermediate points as are peeded

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



Sec. 4101 ARRAYS OF POINT SOURCES 109

may also be obtained in the same manner. Following this procedure, the
field pattern for our problem of the eight-source array is presented in
Fig. 4-35a in rectangular coordinates and in Fig. 4-35b in polar coordinates.

g=0°

Relative
Relative field
tield +

(d)

90° 60° 3¢¢ O 30° 60° 90
8

e & & & 0 0 0 0
Array

Fra. 4-35. Relative field pattern of broadside array of eight isotropic sources spaced
1 wavelength apart. The amplitude distribution gives a minimum beam width for a
side-lobe level one-twentieth of the main lobe. The pattern is shown in rectangular

coordinates at (a) and in polar at (b). Both diagrams show the pattern only from —99°
to +90°, the other half of the pattern being identical.

4-10. Comparison of Amplitude Distributions for Eight-source Arrays.
In the problem worked in the preceding section, the side-lobe level was
26 db below the maximum of the main beam (E = 20). It is of interest
to compare the amplitude for this case with the distributions for other
side-lobe levels. This is done in Fig. 4-36, in which the relative amplitude
distributions are shown for eight-source arrays with side-lobe levele
ranging from 0 db to an infinite number of decibels below the main beam
maximum. The infinite db case corresponds to B = « (zero side-lobe level)
and is identical with Stone’s binomial distribution. The relative ampli-
tudes for this case are 1, 7, 21, 35, 35, 21, 7, 1. The ratio of amplitudes of
the center sources to the edge sources is 35 to 1. Such a large ratio would
be very difficult to achieve in practice. As the side-lobe level increases
(R decreases), the amplitude distribution becomes more uniform, the ratio
of the center to edge amplitudes being only about 3 to 1 for the 26-db
(B = 20) case. The 20-db case (B = 10) is more uniform, with an ampli-
tude ratio of only 1.7 to 1. The 14-db case (B = 5) exhibits a still more
uniform distribution but shows an inversion, the maximum amplitude
having shifted to the outermost sources (1 and 8). The uniform dis-
tribution is not a special case of the Dolph-Tchebyscheff distribution, an
inversion occurring before the uniform case is reached. As the side-lobe
level is raised still further, the distribution tends more toward an edge type,
the amplitude of the inner sources decreasing still further. In the extreme
case, where the side lobes are equal to the main-lobe level (0 db, or R = 1),
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the amplitudes of all of the inner sources are zero, and the distribution is
of the edge type discussed in connection with Fig. 4-29. Thus, both the
binomial and edge distributions are special cases of the Dolph-Tcheby-
scheff distribution, but the uniform amplitude distribution is not. The
point of nearest approach to the uniform distribution is for an R value
between 5 and 10. Referring to Fig. 4-20 and interpolating for n = §
between the curves for n = 10 and » = 5, it is interesting to note that
the ratio of the main-lobe maximum to the minor-lobe maxima ranges
from about 4.3 to 8 for an array of eight sources of uniform amplitude.

10

Relative amplitude

db
=1

o

R

— é
2 3 4 5 6 7 8
Linear array of 8 sources

Frc. 4-36. Comparison of Dolph-Tchebyscheff amplitude distribution envelopes for
various side-lobe levels.

The Dolph-Tchebyscheff optimum amplitude distribution, as discussed
in the preceding sections, is optimum only if d > A/2, which covers the
cases of most interest for broadside arrays. By a generalization of the
method, however, cases with smaller spacings can also be optimized.

In conclusion, it should be pointed out that the properties of the
Tchebyscheff polynomials may be applied not only to antenna patterns
as discussed above but also to other situations. It is necessary, however,
that the function to be optimized be expressible as a polynomial.

4-11. Continuous Arrays. In the preceding sections, the discussion has
been restricted to arrays of discrete point sources, that is, to arrays of a
finite number of sources separated by finite distances. We now proceed

1H. J. Riblet, Proc. I.R.E., 85, No. 5, 489-492, May, 1947.
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to a consideration of continuous arrays of point sources, that is, arrays of
an infinite number of sources separated by infinitesimal distances. By
Huygens’ principle, a continuous array of point sources is equivalent to
a continuous field distribution. In this way, our discussion of continuous
arrays can be extended to include the radiation patterns of field distribu-~
tions across apertures, as, for example, the pattern of an electromagnetic
horn where the field distribution across the mouth of the horn is known.

We shall now develop an expression for the far field of a continuous
array of point sources of uniform amplitude and of the same phase. Let
the array of length a be parallel to the y axis with its center at the origin

Y
To
distant
3 T point
dy
3
8
a O X
V‘Con'inuous
orray
-8
2

Fic. 4-37. Continuous broadside array of point sources of length a.

as indicated in Fig. 4-37. Then the field dE at a distant point in the
direction 4 due to the point sources in the infinitesimal length dy at a
distance y from the origin is

dE = A eﬂ'w("%) dy = 4 ef @t=Br) dy (4-128)

71 1

where 8 = w/c = 2r/A and A4 is a constant involving amplitude. The
total field F at the distant point is then the integrated value of (4-128)
over the array of length a as given by

a/2

A f{wt—Br
E = — ¢! “tPrY gy (4-129)

—as2 T

Both 4 and the time factor may be taken outside the integral, and r,
may also be if r; >> a. Thus,

Aiwt a/2 .
g=4 f e gy (4-130)

7’y —a/2
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But, referring to Fig. 4-37,
n=r—ysnd (4-131)

Substituting (4-131) in (4-130) and taking the constant factor ¢ " out-
side the integral, we have

a/2
B=ar [ ooy (4-132)
—a/2
where
i{wt—fr)
A’ = —4‘57—— (4-133)
1

Integrating (4-132) yields

’ i& sin 0 -—iﬂ—a sin 0
24 € 2 — € 2

B=5ars 5 (4-134)
which may be written as
7 = B—stii—n—esin (3—2" sin o) (4-135)
Let
Y = Basin § = a, sin ¢ (4-136)
where a, = fa = 2mwa/\ = array length in radians
Then
E= stéin _sin "’3 (4-137)
But from (4-136)
a= ¥
Bsin 6 = a
so that (4-137) becomes
E=a4 ,p("lﬁ“zlz“) (4-138)
Normalizing (4-138) gives finally
E= S—“‘w—(% (4-139)

Equation (4-139) expresses the far field, or Fraunhofer diffraction
pattern, of a continuous broadside array of length @, having uniform
amplitude and phase. For n discrete, equally spaced sources, it was pre-
viouslv shown by {4-52) that the normalized value of the total field is
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_ sin (ny/2)

= nsin (¥/2) (4-140)

wherey = d cos¢ + 5
For in-phase sources, § = 0. Comparing Figs. 4-18 and 4-37 we note
that ¢ = 6 + /2, so that

v = —d,sinf = —Bdsin b (4-141)

For small values of ¢, which occur for small values of 8, d, or both, (4-140)
can be expressed as

_ sin (n¢/2)  sin ((Bnd/2) sin §)

B=—02 = (Bnd/2)smb (4-142)
The length a of the array of discrete sources is
a=dn—1) (4-143)
where » = number of sources
d = spacing
If n > 1, a >~ nd, and (4-142) becomes
> _ sin ((Ba/2) sin ) _ sin ((a,/2) sin )
= Ga)sn o (a2 s 0 (4-144)
where a, = Ba = 2ra/\
By (4-136) this can now be expressed as
p-0/2 (4-145)

v'/2
which is identical with the value obtained in (4-139) for the continuous
array. Thus, the field pattern for an array of many discrete sources
(n > 1) and for small values of ¥ is the same as the pattern of a con-
tinuous array of the same length. If the array is long, that is, if nd >> ),
the main beam and the first minor lobes are confined to small values of 4.
It, therefore, follows that the main features of the pattern of a large
array are the same, whether the array has many discrete sources or is
a continuous distribution of sources. Many of the conclusions derived in
previous sections concerning amplitude distributions for arrays of dis-
crete sources can also be applied to continuous arrays provided that the
arrays are large.

The null directions §, of the continuous array pattern are given by
14

’
5 = +Kx (4-146)

where K = 1,2,3..
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Thus,
6, = arcsin (ﬂ:%) (4-147)
For a long array (4-147) can be expressed
0, = ig rad ~ :}:57'3 deg (4-148;
ay ay

where a, = a/A
The beam width between first nulls (K = 1) for a long array is then

2 115
26, ~ o rad ~ T deg . (4-149)

It 1s to be noted that (4-147), (4-148), and (4-149) are identical with the
expressions given for the broadside array of discrete sources, if nd is re-
placed by a (see Table 4-2). Therefore, the null locations for arrays of
either discrete or continuous sources are the same provided only that n 3> 1.

Relative Spherical
field wave
front

%po»ner level

(a) / )
. L">° Plane wave

front

Fic. 4-38. Main-lobe field patterns of Figc. 4-39. Spherical and plane wave
continuous uniform broadside arrays 5,10,  fronts with sccondary waves of Huygens.
and 50 wavelengths long,.

The field patterns of the main beam of continuous arrays of point sources
5, 10, and 50 wavelengths long are compared in Fig. 4-38. It may be
noted that the beam width between half-power points, 6yp, of a long,
uniform broadside array is given approximately by

0.9

Bupr = 0.9001 = a rad (4‘150)
or
0]{17 = —51 deg (4:‘151)
Qa\
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4-12. Huygens’ Principle.’ The principle proposed by Christian Huy-
gens (1629-1695), now often called Huygens’ principle, has been of funda-
mental importance to the development of wave theory. According to
Huygens, each point of a wave front can be considered as the source of a
secondary spherical wave. The secondary spherical waves from the
points on a wave front then combine to form a new wave front, the new

TY

'\
——
i a ——>x
Sheet
—_—
Relative amplitude
Plane e
wave
(a) (b)

F1a. 4-40. Planc wave incident on opaque sheet with slot of width a.

wave front being the envelope of the secondary wavelets. Thus a spherical
wave from a single point source propagates as a spherical wave as indi-
cated in Fig. 4-39a. On the other hand, an infinite plane wave continues
as a plane wave as suggested by Fig. 4-395.

1]. C. Slater and N. H. Frank, “Introduction to Theoretical Physics,” McGraw-ITill
Book Company, Inc., New York, 1933, Chaps. 26 and 27.

Max Born, “Optik,” Verlag Julius Springer, Berliu, 1933, Sec. 44, p. 142.

Arnold Sommerfeld, Theorie der Beugung, Chap. 20 of “Differential und Integral-
gleichungen der Mechanik und Physik,” Frank and von Mises, Editors, Friedrich
Vieweg & Sohn, Brunswick, 1935.

J. A. Stratton, ‘“Electromagnetic Theory,” McGraw-Hill Book Company, Ine.,
New York, 1941, p. 460.

J. C. Slater, “Microwave Transmission,” McGraw-Hill Book Company, Inc., New
York, 1942, p. 256.

R. C. Spencer, Fourier Integral Methods of Pattern Analysis, Radiation Lab, M.I.T.
Rep. 762-1, 1946.

B. B. Baker and E, T. Copson, ‘“The Mathematical Theory of Huygens’ Principle,”
Oxford University Press, New York, 1939.
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Let us consider now the situation shown in Fig. 4-40a in which an
infinite plane electromagnetic wave is incident on an infinite flat sheet
which is opaque to the waves. The sheet has a slot of width a and of
infinite length in the direction normal to the page. The field everywhere
to the right of the sheet is the result of the section of the wave that passes
through the slot. If a is many wavelengths, the field distribution across
the slot may be assumed, in the first approximation, to be uniform as

P b
Minor
lobe
Sheet
.
T ? > Major
lobe
I'e
—_— 3 — 7Ty - - ——— — =~ —_— | —
) “
( el __
{a) (b}, ()
- Fresnel patterns
Plane
wave

Fraunhofer

patterns
Y /

(d)
F1c. 4-41. Fresnel and Fraunhofer patterns of a slot of width a.

shown in Fig. 4-40b. By Huygens’ principle the field everywhere to the
right of the sheet is the same as though each point in the plane of the
slot is the source of a new spherical wave. Each of these point sources is
of equal amplitude and phase. Thus, by Huygens’ principle the slotted
sheet with a uniform field across the opening can be replaced by a con-
tinuous array of point sources which just fills the opening. The field
pattern in the z-y plane (Fig-40a) is then calculated the same as for a
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continuous linear array of point sources of length @ oriented parallel to
the y axis.

The far field, or Fraunhofer diffraction pattern, of such an array was
shown in the preceding section to be given by

sin (y'/2)
E="Vrn
where ¢’ = (2ra/A) sin 6 and where 6 is in the z-y plane (Fig. 4-37).
This pattern, in the z-y plane, is independent of the extent of the array
in the z direction (normal to the page).

In deriving (4-152), i.e., (4-145) of Sec. 4-11, the total field at a point
was obtained by integrating the contributions from a continuous array
of sources distributed over a length a. For points at a great distance
from the array the integral can be simplified, and the integration is easy,
as demonstrated in the preceding section. For points near to the array,
however, the integral does not simplify in this way but can be reduced to
a form known as Fresnel’s integral. This integral is often evaluated
graphically with the aid of a curve known as a Cornu spiral. The field
variation near the slot as obtained in this way is commonly called a
Fresne} diffraction pattern. Along a straight line parallel to the slot and
a short distance from it, the field variation is as suggested at (a) in Fig.
4-41, the variation approximating the uniform distribution of field at the
slot as shown in Fig. 4-40b. As the distance x from the slot is increased,
the Fresnel patterns change through a series of transitional forms, such
as suggested at (b) in Fig. 441, until at large distances we enter the
Fraunhofer region and the pattern assumes a form as suggested by (c) in
Fig. 4-41. Ordinarily the Fraunhofer pattern is obtained by rotating the
slot around its center so that the field is observed at a constant radius
rather than at a constant distance z. The resulting field pattern in polar
coordinates is then as suggested at (d) in Fig. 4-41. Once we have entered
the Fraunhofer region, this pattern is the same at all greater distances.
For a point to be in the Fraunhofer region, it must be at a sufficient dis-
tance from the slot so that we can make the assumption that lines extending
from the edges of the slot to the point are parallel. This is commonly
assumed to be the case when the point is at a distance » from the slot
given by

(4-152)

Tz (4-153)

where a is the width or aperture of the slot, which is assumed to be large.
Thus, the larger the aperture or the shorter the wavelength, the greater
must be the distance at which the pattern is measured if we wish to avoid
the effects of Fresnel diffraction.
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A nearly uniform type of field distribution across an aperture such as
discussed above in connection with Figs. 4-40 and 4-41 occurs in optics
when a beam of light is incident on a slit. It also may be realized by
the field distribution across the mouth of a long electromagnetic horn
antenna as in Fig. 4-42q. Since the pattern of a uniform field distribution
is the same as the pattern of a uniform distribution of point sources of
equal extent, another form of antenna equivalent to the optical slit or
electromagnetic horn is a uniform current sheet. This can be approxi-
mated by a “billboard” type of array, as in Fig. 4-42b, having many
dipole antennas carrying equal currents. The expressions which have
been developed can thus be applied to a calculation of the Fraunhofer
diffraction pattern of an optical slit or the far field of a horn or uniform
current sheet. If the field or current distribution across the slit or antenna
aperture is not uniform, the form factor for the distribution will appear in
the integral for the field expression. The result may or may not be in-
tegrable analytically. However, if the aperture is large, the relations
developed for amplitude distributions of arrays of discrete sources can
be applied to the case of continuous arrays of sources.

It should be mentioned that Huygens' principle is not without its
limitations. Thus, it neglects the vector nature of the electromagnetic
field. It also neglects the effect of currents which flow at the edge of the
slot, as in Figs. 4-40 and 4-41, or at the edge of the horn, as in Fig. 4-42q.

L]
®
*®
—_Hom/// Array .
of .
dipoles |-e (b)
with *
reflector -
*®
L J

(a)

Fic. 4-42. Tlectromagnetic horn antenna and array of dipoles with reflector.

However, if the aperture is sufficiently large and we confine our attention
to directions roughly normal to aperture, the scalar theory of Huygens’
principle gives satisfactory results.

4-13. Rectangular-area Broadside Arrays. The method of obtaining
the field patterns of linear arrays discussed in the preceding sections can
be easily extended to the case of rectangular broadside arrays, that is,
arrays of sources which occupy a flat area of rectangular shape, as in
Fig. 4-43. For such a rectangular array, the field patiern in the 2-y plane
(as a function of ) depends only on the y dimension (&) of the array,
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while the field pattern in the z-z plane (as a function of ¢) depends only
on the z dimension (b) of the array. The assumption is made that the
field or current distribution across the array in the y direction is the same
for any values of z between +b/2. Likewise, it is assumed that the
amplitude distribution across the array in the z direction is the same for
all values of y between -a/2. Therefore, the field pattern in the z-y
plane is calculated as though the array consists only of a single linear
array of height a coincident with the y axis (y array). In the same way,
the pattern in the z-z plane is obtained by calculating the pattern of a

Y

b N

Sl ¢
v o
==z
Z
Fig. 4-43. Rectangular broadside array of height a and length b with relation to
coordinates.

single linear array of length b coincident with the z axis (z array). If
the array also has depth in the x direction, that is, has end-fire directivity,
then the pattern in the z-y plane is the product of the patterns of the
single linear x and y arrays, while the pattern in the z-z plane is the product
of the patterns of the x and z arrays.

If the area occupied by the array is not rectangular in shape, the above
principles do not hold. However, the approximate field patterns may be
obtained in the case of an array of elliptical area, for example, by assuming
that it is a rectangular area as in Fig. 4-44a or in the case of a circular
area by assuming that it is square as in Fig. 4-44b.

From the field patterns in two planes (z-y and z-2) of a rectangular
array the beam widths between half-power points can be obtained. If
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the minor lobes are not large, the directivity D is then given approxi-
mately by

D = 41,253/0%" (4-154)

where 6] and ¢} are the half-power beam widths in degrees in the 2-y and
z-z planes, respectively.
An expression for the directivity of a large rectangular broadside array

T~
e —
Y, Y { \
) P \
S t— N /]
——

(@) ®
Fie. 4-44. ZElliptical array with equivalent rectangular array (e) and circular array
with equivalent square array (b).

of height ¢ and width b (Fig. 443) and with a uniform amplitude dis-
tribution may also be derived directly as follows: By (2-38) the directivity
of an antenna is given by

3 47!' f(o, ¢)mnx
b= JI 78, ¢) sin 6 d6 do (4-155)

where (8, ¢) is the space power pattern, which varies as the square of the
space field pattern. From (4-152) the space field pattern of a large
rectangular array is

__ sin ((a, sin 8)/2) sin ((b, sin ¢)/2)
B, 9) = = sm 6)/2 (b, sin 9)/2

where a, = 2ra/A

b, = 2xb/A
The main-beam maximum is in the direction 8§ = ¢ = 0 in Fig. 4-43.
In (4-156), 8 = 0 at the equator, while in (4-155), § = 0 at the north
pole. For large arrays and relatively sharp beams we can therefore re-
place sin 6 and sin ¢ in (4-156) by the angles, while sin 8 in (4-155) can
be set equal to unity. Assuming that the array is unidirectional (no field
in —z direction), the integral in the denominator of (4-155) then becomes

(4-156)

/2 T/2

sin® (ra8/A) sin® (xhe/\)
f f a0/’ (wbany? 0 W (4-157)

-x/2 —x/3
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Making the limits of integration — « to + = instead of —x/2 to +=/2,
(4-157) may be evaluated as A*/ab. Therefore, the approximate direc-
tivity D of a large unidirectional rectangular broadside array with a
uniform amplitude distribution is

4drab ab

D= =126 (4-158)

As an example, the directivity of a broadside array of height a = 10 A
and length b = 20 A is from (4-158) equal to 2,520, or 34 db.

By the approximate formula of (4-154), and taking the half-power beam
widths given by (4-151), the directivity of a large unidirectional broadside
array with a uniform amplitude distribution is approximately

41,253ab ab

D = BEN 15.97 (4-159)

This is about 25 per cent, or 1 db, higher than the value given by (4-158).

PROBLEMS

4-1. a. Show that the relative E(p) pattern of an array of two identical
isotropic in-phase point sources arranged as in the figure is given by
E@@) = cos [(d,/2) sin ¢], where d, = 2wd/\.

9!
|

1
¢ |
L
Y
b. Show that the maxima, nulls, and half-power points « f the pattern are
given by the following refations:

Maxima: = arcsin (i%)
Nulls: ¢ = arcsin [iM]
2d
Hali-power points: ¢ = arcsin [j:(—z-%—p—)-\l

where £ = 0,1,2,3. ..
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¢. For d = \ find the maxima, nulls, and half-power points, and from these
points and any additional points that may be needed plot the E(@)
pattern for 0° < ¢ < 360°. There are four maxima, four nulls, and
eight half-power points.
d. Repeat for d = 3A/2.
. Repeat ford = 4.
f. Repeat for d = A/4. Note that this pattern has two maxima and two
half-power points but no nulls. The half-power points are minima.
4-2. a. Derive an expression for E(p) for an array of four identical isotropic
point sources arranged as in the figure.

<]

The spacing d between each source and the center point of the array is
32/8. Sources 1 and 2 are in phase, and sources 3 and 4 in opposite
phase with respect to 1 and 2.

b. Plot, approximately, the normalized field pattern.

4-3. a. What is the expression for E(¢) for an array of two point sources arranged
as in the figure for Prob. 1. The spacing d is 3 A/8. The amplitude of
source 1 in the ¢ plane is given by | cos ¢ |, and the phase by ¢. The
amplitude of source 2 is given by | cos (@ — 45°) |, and the phase by
¢ ~— 45°.

b. Plot the normalized amplitude and the phase of E(¢) referring the phase
to the center point of the array.

4~4. a. Derive an expression for E{(¢p) for a linear in-phase broadside array of
four identical isotropic point sources. Take ¢ = 0 in the broadside
direction. The spacing between sources is 5A/8.

b. Plot, approximately, the normalized field pattern (0° < ¢ < 360°).

¢. Repeat parts ¢ and b with the changed condition that the amplitudes of
the four sources are proportional to the coefficients of the binomial
series for (a + b)*1,

4-6. a. Calculate and plot cos 0 as z, and cos 30 as y, for —1 < z < +1.
Compare with the curve for T,(x). )

b. Calculate and plot cos 8 as z, and cos 68 as y, for —1 < 2 < +1. Com-
pare with the curve for Tg(x).

4-6. a. ¥Find the Dolph-Tchebyscheff current distribution for the minimum beam
width of a linear in-phase broadside array of five isotropic point sources.
The spacing between sources is 3 wavelength, and the side-lobe level is to
be 20 db down. Take¢ = 0 in the broadside direction.

b. Locate the nulls and maxima ol the minor lobes.
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¢. Plot, approximately, the normalized field pattern (0° < ¢ < 360°).
d. What is the half-power beam width?

4-7. a. Find the Dolph-Tchebyscheff current distribution for the minimum beam
width of a linear in-phase broadside array of eight isotropic sources.
The spacing between elements is § wavelength, and the side-lobe level is
to be 40 db down. Take ¢ = 0 in the broadside direction.

b. Locate the nulls and the maxima of the minor lobes.

¢. Plot, approximately, the normalized field pattern (0° < ¢ < 360°).

d. What is the half-pewer beam width?

a. Derive an expression for E(¥) for an array of n identical isotropic point
sources where ¥ = f(¢, d, §). ¢ is the azimuthal position angle with¢ = 0
in the direction of the array. § is the phase lag between sources as one
moves along the array in the ¢ = 0° direction and d is the spacing.

b. Plot the normalized field as ordinate and ¢ as abscissa for n = 2, 4, 6, §,
10, and 12 for 0° < ¢ < 180°.

4-9. a. Plot E(p) for an end-fire array of » = 10 identical isotropic point sources

spaced 3 \/8 apart with § = — 3r/4.
b. Repeat with 6 = —x[(3/4) + (1/2)].
4-10. a. Calculate the directivity of a broadside array of two identical isotropic
in-phase point sources spaced 3 wavelength apart along the polar axis,
the field pattern being given by

E = cos (g cos 0)
where 6 is the polar angle.
b. Show that the directivity for a broadside array of two identical isotropic
in-phase point sources spaced a distance d is given by

2
T 1+ (\/2rd) sin (2md/N)
4-11. a. Calculate the directivity of an end-fire array of two identical isotropic

point sources in phase opposition, spaced & wavelength apart along the
polar axis, the relative field pattern being given by

E = sin (g cos 0)

where 6 is the polar angle.
b. Show that the directivity of an ordinary end-fire array of two identical
isotropic point sources spaced a distance d is given by

D

2
= 1+ (\/4rd) sin (4rd/N)

4-12. A broadcasting station requires the horizontal plane pattern indicated by
the figure. The maximum field intensity is to be radiated northeast with as little
decrease as possible in field intensity in the 90° sector between north and east. No

D
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124 ANTENNAS [CHar. 4

nulls are permitted in this sector. Nulls may oceur in any direction in the comple-
mentary 270° sector. However, it is required that nulls must be present for the
directions of due west and due southwest, in order to prevent interference with
sther stations in these directions.

b NE
max
Intensily neorly
uniform
W¢” E
Nl g0
Null
S

Design a four-vertical-tower array to fulfill these requirements. The currents are
to be equal in magnitude in all towers, but the phase may be adjusted to any rela-
tionship. There is also no restriction on the spacing or geometrical arrangements of
the towers. Plot the field pattern.

4-13. Calculate and plot the field and phase patterns for an array of two iso-
tropic sources of the same amplitude and phase, for {wo cases:

a. d= A

i #=lw

b. d= =X

Plot the field pattern in polar coordinates and phase pattern in rectan-
gular coordinates with
1. Phase center at source 1
2. Phase center at mid-point
4-14. Calculate and piot the field and phase patterns of an array of two noniso-
tropic dissimilar sources for which the total field is given by

E = cosqb-}-sinq&ﬂ
where ¢ = d, cos ¢ + 5=1—;(cosd>+ 1

Take source 1 as the reference for phase.
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4-15. Calculate the Dolph-Tchebyscheff distribution of a six-source broadside
array for B = 5, 7, and 10. Explain the variation.

4-16. In Case 5 of Sec. 4-2 for two isotropic point sources of unequal amplitude
and any phase difference show that the phase angle of the total field with m1d—p01nt
of the array as phase center is given by

)

4-17. Calculate and plot the field and phase patterns for the cases of Fig. 4-21
and 4-22 and compare with the curves shown.

4-18. a. What is an expression for the field pattern of an array of five identical

isotropic point sources arranged in line and spaced a distance d apart?
The phase lead of source 2 over 1, 3 over 2, etc., is .

b. What value should @ have to make the array a broadside type? IFor
this broadside case what are the relative current magnitudes of the
sources for
1. Maximum directivity
2. No side lobes
3. Side lobes equal in magnitude to “main’’ lobe

4-19. A broadcast array of two vertical towers with equal currents is to have a
horizontal plane pattern with a broad maximum of field intensity to the north and a
null at an azimuth angle of 131° measured counterclockwise from the north. Spec-
ify the arrangement of the towers, their spacing, and phasing. Calculate and plot
the field pattern in the horizontal plane.

4-20. A broadcast array with three vertical towers arranged in a straight horizon-
tal line is to have a horizontal plane pattern with a broad maximum of field intensity
to the north and nulls at azimuth angles of 105° 147°, and 213° measured counter-
clockwise from the north. The towers need not have equal currents. For the pur-
pose of analysis the center tower (No. 2) may be regarded as two towers, one be-
longing to an array of towers 1 and 2 and the other to an array of towers 2 and 3.
Specify the arrangement of towers, their spacing, currents, and phasing. Caleulate
and plot the field pattern in the horizontal plane.

4-21. A broadcast array of four vertical towers with equal currents is to have a
symmetrical four-lobed pattern in the horizontal plane with maximum field in-
tensity to the north, east, south, and west and a reduced field intensity to the north-
east, southeast, southwest, and northwest equal to one-half the maximum. Specify
the array arrangement, orientation, spacing, and phasing. Calculate and plot the
field pattern in the horizontal plane.

4-22. a. Calculate and plot the field pattern of a linear array of eight isotropic
point sources of equal amplitude spaced 0.2 wavelength apart for the
ordinary end-fire condition.

b. Repeat, assuming that the phasing satisfies the Hansen and Woodyard
increased directivity condition.

¢. Calculate the directivity in both cases by graphical integration of the
entire pattern,

rctan <a
a T1
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4-23. Calculate and plot the patterns in both planes perpendicular to a rectan-
gular sheet carrying a current of uniform density and everywhere of the same direc-
tion and phase if the sheet measures 10 by 20 wavelengths. What is the approxi-
mate directivity?

4-24. a. Calculate and plot the field pattern of a linear end-fire array of 12 iso-
tropic point sources of equal amplitude spaced + wavelength apart for
the ordinary end-fire condition.

b. Calculate the directivity by graphical integration of the entire pattern.
Note that it is the power pattern (square of field pattern) which is to be
integrated. It is most convenient to make the array axis coincide with
the polar or z axis of Fig. 2-2 so that the pattern is a function only of 6.

¢. Calculate the directivity by the approximate half-power beam-width
method, and compare with that obtained in (b).

4-25. a. Calculate and plot the pattern of a linear broadside array of 12 isotropic
point sources of equal amplitude spaced § wavelength apart with all
sources in the same phase.

b. Calculate the directivity by graphical integration of the entire pattern,
and compare with the directivity obtained in Prob. 24 for the same size
array operating end fire.

¢. Calculate the directivity by the approximate half-power beam-width
method, and compare with that obtained in (b).

4-26. a. Calculate and plot the pattern of a linear end-fire array of 12 isotropic
point sources of equal amplitude spaced ; wavelength apart and phased
to fulfill the Hansen and Woodyard increased-directivity condition.

b. Calculate the directivity by graphical integration of the entire pattern,
and compare with the directivity obtained in Prob. 4-24 and 4-25.

¢. Calculate the directivity by the approximate half-power beam-width
method, and compare with that obtained in (b).

4-27. Referring to Fig. 4-18 assume that the uniform array of n isotropic point
sources is connected by a transmission system extending along the array with the
feed point at source 1 so that the phase of source 2 lags 1 by wd/v, 3 lags 1 by 2wd/v,
ete., where v is the phase velocity to the right along the transmission system. Show
that the far field is given by (4-51) where ¥ = d.[cos ¢ — (1/p)], where p is the
relative phase velocity, 7.e. p = v/c where ¢ is the veloeity of light. Show also that
p = o for the broadside case, p = 2 for maximum field at¢ = 60°, p = 1 for ordi-
nary end-fire case, and p = 1/[1 4 (1/2nd,)] for increased-directivity end-fire case.

4-28. Consider that the array of discrete sources in Fig. 4-18 is replaced by a
confinuous array of length L and assume that it is energized like the array of Prob.
4-27. Show that the far field for the general case of any phase lag §’ per unit dis-
tance along the continuous array is given by (4-145) where ¢’ = L, cos¢ — §’'L =
L.Jcos¢ — (1/p)], where p = v/c as in Prob. 4-27. Show also that for the four cases
considered in Prob. 4-27 the p values are the same except for the increased-diree-
tivity end-fire ease where p = 1/[1 + (1/2L))].
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CHAPTER 5

THE ELECTRIC DIPOLE AND
THIN LINEAR ANTENNAS

b-1. The Short Electric Dipole. Since any linear antenna may be con-
sidered as consisting of a large number of very short conductors con-
nected in series, it is of interest to examine first the radiation properties
of short conductors. From a knowledge of the properties of short con-
ductors, we can then proceed to a study of long linear conductors such as
are commonly employed in practice.

A short linear conductor is often called a short dipole. In the following
discussion, a short dipole is always of finite length even though it may be
very short. If the dipole is vanishingly short, it is an infinitesimal dipole.

Let us consider a short dipole such as shown in Fig. 5-1a. The length
L is very short compared to the wavelength

(L &« A). DPlates at the ends of the dipole St +a
provide capacitance loading. The short length I I

and the presence of these plates result in a = Tl L oL TI
uniform current I along the entire length L T{ﬁ\"jmlssm l l

of the dipole. The dipole may be energized — Y é—q
by a balanced transmission line, as shown. It (a) b

is assumed that the transmission line does not e, 5-1. A short dipole
radiate and, therefore, its presence will be dis- antenna (a) and its equiva
regarded. Radiation from the end plates is lent (b).
also considered to be negligible. The diameter
d of the dipole is small compared to its length (d << L). Thus, for purposes
of analysis we may consider that the short dipole appears as in Fig. 5-1b.
Here it consists simply of a thin conductor of length L with a uniform
current [ and point charges ¢ at the ends. The current and charge are
reiasted by
dg
dt

6-2. The Fields of a Short Dipole.! Let us now proceed to find the

1J. Aharoni, ‘“Antennae,” Oxford University Press, New York, 1946, p. 116.

A. Alford, Ultra-short Electromagnetic Waves: Radiation, Elec. Eng., July, 1943.

Ramo and Whinnery, ‘“Fields and Waves in Modern Radio,” John Wiley and Sons
Tne., New York, 1944, p. 430.

=17 5-1

127
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128 ANTENNAS [CHaP. 5

fields everywhere around a short dipole. et the dipole of length L be
placed coincident with the z axis and with its center at the origin as in
Fig. 5-2. The relation of the electric field components, £, and Z,, is
then as shown. It is assumed that the medium surrounding the dipole
is air or vacuum.

X
Fre. 5-2. Relation of dipole to coordi- Fra. 5-3. Geometry for short dipole.
nates.

Klectric and magnetic fields can be expressed in terms of veetor and
scalar potentials. Sinece we will be interested not only in the fields near
the dipole but also at distances which are large compared to the wave-
length, we must use retarded potentials, that is, expressions involving
t — r/c. For a dipole located as in Fig. 5-2 or Fig. 5-3, the retarded
vector potential of the electric current has only one component, namely,
A.. Tts value is

a=2 Yy, (5-2)

4 ) ~Ls2 S

- where [f] is the retarded current given by

[1] = Ie'*(-2) (5-3)

In (5-2) and (5-3)
z = distance to a point on the conductor
I, = peak value in time of current (uniform along dipole)
= permeability of free space
If the distance from the dipole is large compared to its length (r >> L)
and if the wavelength is large compared to the length (A > L), we can
put s = r and neglect the phase differences of the field contributions
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from different parts of the wire. The integrand in (5-2) can then be
regarded as a constant, so that {5-2) becomes

uLIe (=9

4. = 4ar (5-4)
The retarded scalar potential V of a charge distribution is
L[ L]
- 47|'6 Jy 8§ dT (5‘5)
where [p] is the retarded charge density given by
o] = poe’*(=3) - (56)

and dr = infinitesimal volume element

¢ = dielectric constant of free space
Since the region of charge in the case of the dipole being considered is
confined to the points at the ends as in Fig. 5-1b, (5-5) reduces to

From (5-1) and (5-3)
= [matr=1, [ D g =1 (5-8
= [ 1 [e . )

Substituting (5-8) into (5-7),

= _to_
T drejw
fw(l—%) iw(t—:’c—')]
e e
l: 8 B Sz (5-9) K

Referring to Fig. 54, when r > L,
the lines connecting the ends of the
dipole and the point P may be con-

sidered as parallel so that
Dipote

L
=7 -— ) cos 8 (5-10)  Fie. 5-4. Relations for short dipole when
r > L,
and
L
S, =r+ o cos ] (5-11)

Substituting (5-10) and (5-11) into (5-9) and elearing fractions, we have
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(5-12)

2

r

[0l oon 0( L ﬂ) oL oo o( L \
- Ioe"”('"%) [e 2 \r 4 B cos e 2¢ 71 ) cos g/:]
T drejw

where the term L? cos® 8/4 in the denominator has been neglected in com.
parison with 7* by assuming that r >> L. By de Moivre’s theorem (5-12)

becomes,
_ T (9 I:( wl ecos 6 | . . wL cos 0)( L )
V= Mélqrejwr“ €08 — 5 — + jsin N\ + 5 cos ]
wLcos® . . wLecos L
-~ (cos g,  — Jsin T)(r — 5 cos 0)] (5-13)
If the wavelength is much greater than the length of the dipole (A > L),
then
wLl cos § 7L cos 6
08 T = o8 T o 1 (5-149)
and
sinwL cos 6 _ wL cos 6 (5-15)

2 2c
Introducing (5-14) and (5-15) into (5-13), the expression for the scalar
potential then reduces to

V= I,L cos e’ *(*=2) (

4rrec

1 ¢ 1
; + s F) (5-16)
Equations (5-4) and (5-16) express the vector and scalar potentials every-
where due to a short dipole. The only restrictions are that » 3> L and
A > L. These equations give the vector and scalar potentials at a point
P in terms of the distance r to the point from the center of the dipole,
the angle 0, the length of the dipole L, the current on the dipole, and
some constants.

Knowing the vector potential A and the scalar potential V, the electric
and magnetic fields may then be obtained from the relations

= —jwA -V V (5-17)
and

H=iVXA (5-18}

It will be desirable to obtain E and H in polar coordinates. The polar
coordinate components for the vector potential are

A=aA, + aA,+ ad, (5~-19
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Since the vector potential for the dipole has only a z component, 4, = 0,
and A, and A4, are given by (see Fig. 5-5)

A, = A, cos @ (5-20)
Ay = —A.sin @ (5-21)

where A, is as given by (5-4). In polar coordinates the gradient of V is

LoV 1 oy
'y 86 *rsin 6 8¢

VV'-a——+ (5-22)

Calculating now the electric field E from (5-17), let us first express E
in its polar coordinate components. Thus,

E = a.F, + a,Ey + a,E, (5-23) y A,
From (5-17), (5-19) and (5-22) the
three components of E are then
A, g A, 2]

- — _ v Ar
E, = —jwA. 3 (5-24)
By = —jods - 22V (5-25)

T Fia. 5-5. Resolution of vector potential

_ . 1 QK into A, and Ay components.

E, = —jod, rsin 6 8¢ (5-26)

In (5-26) A, = 0. The second term is also zero since V in (5-16) is inde-
pendent of ¢ so that 3V/d¢ = 0. Therefore, E, = 0. Substituting (5-20)
into (5-24) and (5-21) into (5-25), we have

E, = —jwA, cos 8§ — % (5-27)
and
By = jud.sin g — 1 %% (5-28)

Introducing now the values of 4, from (5-4) and V from (5-16) into (5-27)
and (5-28) and performing the indicated operations, we obtain

I,L cos 0 *(:=2) (
E, = 2me e _7:;) (529
and
_ LLsin g¢™(*) (%cg 1.1 ‘)
E, = i 7+t e (5-30)
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In obtdining (5:29) and (5-30) the relation was used that we = 1/c
where ¢ = velocity of light.

Turning our attention now to the magnetic field, this may be caleulated
by (5-18). In polar coordinates the curl of A is

_ 8, [oGsino)d, a(TAo)]
VXA—rzsin(J[ a6 d¢
a, [Qél _ d(rsin 9)42}
rsin 6 | d¢ ar

L [a(rA‘,)_ _ 84,

r or 6_6] (5_31)

Since 4, = 0, the first and fourth terms of (5-31) are zero. From (5-4)
and (5-20) and (5-21) we note that 4, and A, are independent of ¢, so
that the second and third terms of (5-31) are also zero. Thus, only the
last two terms in (5-31) contribute so that V X A, and hence also H, have
only a ¢ component. Introducing (5-20) and (5-21) into (5-31), per-
forming the indicated operations, and substituting this result into (5-18),
we have

|Hl=H¢=M<‘E+%> (5_32)

47 cr T
and
H,=H, =0 (5-33)

" Thus, the fields from the dipole have only three components E,, E,,
and Hy,. The components I, H,, and H, are everywhere zero.

When r is very large, the terms in 1/r* and 1/7° in (5-29), (5-30), and
(5-32) can be neglected in favor of the terms in 1/r. Thus, in the far
field E, is negligible, and we have effectively only two field components, E,
and H,, given by

_ jwlLsin # e (=9

E, drec’r (5-34)
and
oI, Lsin 66/~
o, = JwIOLszrgTe (5-35)
Taking the ratio of E, to H, as given by (5-34) and (5-35), we obtain
% = ;lz‘ = \/% = 377 ohms (5-36)
¢

This is the intrinsic impedance of free space,
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Comparing (5-34) and (5-35) we note that E, and H, are in time phase
in the far field. We note also that the field patterns of both are pro-
portional to sin 6. The pattern is independent of ¢, so that the space
pattern is doughnut-shaped, being a figure of revolution of the pattern in
Fig. 5-6a about the axis of the dipole. Referring to the near-field ex-
pressions given by (5-29), (5-30), and (5-32), we note that for a small r
the electric field has two components E, and E,, which are both in time
phase quadrature with the magnetic field, as in a resonator. At inter-
mediate distances, E; and E, can approach time quadrature so that the
total electric field vector rotates in a plane parallel to the direction of

propagation, thus exhibiting the
;Dipole

phenomenon of cross-field." For the
(a) (b

Sec. 5-2]

E; and H, components, the near-
field patterns are the same as the
far-field patterns, being proportional
to sin 6 (¥Fig. 5-6a). However, the
near-field pattern for E, is propor-

Dipote

tional to cos 4 as indicated by Fig.
5-6b. The space pattern for E, is a
figure of revolution of this pattern

Frc. 5-6. Near- and far-field patterns of
Ey and H,; components for short dipole
(a) and near-field pattern of E, component,

).

around the dipole axis.
Let us now consider the situation at very low frequencies. This will be
referred to as the quasi-stationary, or d-c, case. Since from (5-8),

1] = I3 = julg] (5-37)
(5-29) and (5-30) can be rewritten as
~ [g)L cos 8 <]_w 1)
B, = 2re et (5-38)
and
_ lglLsin g <_af_ ) l) ;
E, = i en + o? + 3 (5-39)
The magnetic field is given by (5-32) as
_ [ILsin ¢ <]£ 1)
H, = 47 cr + r? (5-40)

At low frequencies, w approaches zero so that the terms with w in the
numerator can be neglected. As w — 0, we also have

[q] = g'*("9) = ¢, (5-41)

1See “Very High Frequency Techniques,” by Radio Research Laboratory Staff,
MeGraw-Hill Book Company, Inc., New York, 1947, p. 199.
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and
n=1I, (542)

Thus, for the quasi-stationary, or d-c, case, the field components become
from (5-38), (5-39), and (5-40),

_ goLi cos 6

E. = 2xer’ (5-43)
_ gLsin @

Ey = drer® (5-44)
I,Lsin @

H, = . (5-45)

The restriction that r >> L still applies.

The expressions for the electric field, (5-43) and (5-44), are’ identical
to those obtained in electrostatics for the field of two point charges, +g,
and —g,, separated by a distance L. The relation for the magnetic field,
(5-45), may be recognized as the Biot-Savart relation for the magnetic
field of a short element carrying a steady or slowly varying current. Since
in the expressions for the quasi-stationary case the fields decrease as
1/7% or 1/7*, the fields are confined to the vicinity of the dipole and there
is negligible radiation. In the general expressions for the fields, (5-38),
(5-39), and (5-40), it is the 1/r terms which are important in the far field
and hence take into account the radiation.

The expressions for the fields from a short dipoie developed above are
summarized in Table 5-1.

If we had been interested only in the far field, the development be-
ginning with (5-5) could have been much simplified. The scalar potential
V' does not contribute to the far field, so that both E and H may be de-
termined from A alone. Thus, from (5-17), E and H of the far field may
be obtained very simply from

|E| = By = —juwd, (5-45a)
and

B =H,=2= 1y, (5-45b)

where Z = \/L_/"e = 377 ohms
Or H may be obtained as before from (5-18) and E from this. Thus,

1
[H|=H=1|V XAl (5-450
and neglecting terms in 1/7?,

IE|=E.=ZH¢=§]VXAI (5-45d)
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5-3. Radiation Resistance of Short Electric Dipole. Let us now calcus
late the radiation resistance of the short dipole of Fig. 5-1. This may be
done as follows. The Poynting vector of the far field is integrated over a
large sphere to obtain the total power radiated. This power is then
equated to I’R where I is the rms current on the dipole and R is a re-
sistance, called the radiation resistance of the dipole.

The average Poynting vector is given by

P = } Re (E X H¥ (5-46)

The far-field components are E, and H, so that the radial component of the
Poynting vector is

P, = 1Re E,H? (5-47)

where E, and H} are complex.
The far-field components are related by the intrinsic impedance of the
medium. Hence,

E, = H,Z = H,,\ﬁ—‘ (5-48)
Thus, (5-47) becomes

P, =iReZHH} =1 |H,"ReZ = } | H, \ﬁ-‘ (5-49)

The total power radiated W is then

W= [[pas= \fﬂf [V H Prsinodods (550

where the angles are as shown in Fig. 5-2 and |H,| is the absolute value of
the magnetic field, which from (5-35) is

wl,L sin @

| H, | = 4mer

(5-51)
Substituting this into (5-50) we have
27272 27 L3
W = i\ﬁ—‘é—ﬁ’f—f [ sin® 0 do d (5-52)
32Ve o Jo -

Upon integrating, (5-52) becomes

E BZIng

W= e 12n

(5-53)
This is the average power or rate at which energy is streaming out of a

sphere surrounding the dipole. Hence, it is equal to the power radiated.
Assuming no losses, it is also equal to the power delivered to the dipole.
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Therefore. W must be equal to the square of the rms current I flowing on
the dipole times a resistance R called the radiation resistance of the dipole.

Thus,
E BZ[gLQ _ (—[i—)2 \
\[e 12 \,/2 B (5-54)
Solving for R,
_ L eEL
R = e (5-55)
for air or vacuum +/u/e = 377 = 120x ohms so that (5-55) becomes
2
R = 80« (%) = 80r’L; (5-56)

As an example suppose that I, = 1/10. Then R = 7.9 ohms. If
L, = 0.01, then B = 0.08 chm. Thus, the radiation resistance of a short
dipole is small.

In developing the field expressions for the short dipole, which were
used in obtaining (5-56), the restriction was made that A > L. This
made it possible to neglect the phase difference of field contributions from
different parts of the dipole. If L, = } we violate this assumption, but,
as a matter of interest, let us find what the radiation resistance of a 3-
wavelength dipole is, when calculated in this way. Then for L, = 1,
we obtain B = 197 ohms. The correct value is 168 ohms (see Prob. 5-4),
which indicates the magnitude of the error introdueced by violating the
restriction that A >> L to the extent of taking L = A/2.

5-4. The Fields of a Short Dipole by the Hertz Vector Method. In
Sec. 5-2 the fields of a short dipole were obtained by a method involving
the use of vector and scalar potentials. Another equivalent method
which is sometimes employed makes use of the Hertz vector. Since this
method is frequently found in the literature, it will be of interest to use
it to find the fields of a short electric dipole. The fields so obtained are
identical with those found by the vector-scalar potential method, indicating
the equivalence of the two procedures.

The retarded vector potential of any electric-current distribution is
given by

Azﬁvgm (5-57)

where the retarded current density {J] is given by

7] = Je (9 (5-58)
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Multiplying aumerator and denominator by e (5-57) may be written as

o1l
A= pe a0 (5-59)

wherve
ol _ 1,

at 4we Jy 1 (5-60)

where ¢ represents time and + volume. The quantity II is the retarded
Hertz vector or retarded Hertzian potential. Since [J] is the only time
dependent quantity on the right side of (5-60), we have for the retarded
Hertz vector

_ 1 [ fyja, _ 1 Ji
= 4re Jy T dr = 4rejw fy r dr (5-61)
Since
o= Hogiw(‘_%l
we obtain from (5-59)
A = jopell (5-62)
and
-
T wpe A (5-63)

If the retarded Hertz vector is known, both E and H everywhere can
be caleulated from the relations

E = ol + V (V - ) (5-64)

H=jwV X1 (5-65)

Thus, E and H are derivable from a single potential function, . Sub-

stituting (5-63) into (5-64) and (5-65), these relations may be also re-
expressed in terms of A alone. Thus,

P .
= —juh = 2V (V- 8) (5-66)

- —};v % A (5-67)

Let us now find the retarded Hertz vector for a short electric dipole.
The vector potential for the dipole has only a z component as given by
(5-4). Therefore, from (5-63) the Hertz vector has only a z component
given by

(D
m, = Hele 79 (5-68)

Axrwe
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In polar coordinates I has two components, obtained in the same way ae
the components of A in (5-20) and (5-21). Thus,

II = a,II, cos @ — a,ll, sin @ (5-69)

Substituting (5-68) into (5-69), and this in turn in (5-65) and performing
the indicated operations, yields the result that

g, = WLsin o (i | 1) 5:70)

4 cr r

This result is identical with that obtained previously in (5-32). We
could have anticipated this result since substituting (5-63) into (5-65)
gives (5-67), from which (5-32) was obtained.

Substituting (5-68) into (5-69) and this in turn in (5-64) then gives the
electric field E everywhere. The expressions for the two components,
E, and E,, so obtained are identical with those arrived at in (5-29) and
(5-30) by the use of vector and scalar potentials.

6-6. The Thin Linear Antenna.' In this section expressions for the
far-field patterns of thin linear antennas will be developed. It is assumed
that the antennas are symmetrically fed at the center by a balanced two-
wire transmission line. The antennas may be of any length, but it is
assumed that the current distribution is sinusoidal. Current-distribution

YRR
RN

A 3

Fie. 5-7. Approximate natural current distribution for thin, linear center-fed antennas
of various lengths.

measurements indicate that this is a good assumption provided that the
antenna is thin. that is, when the conductor diameter is less than, say,
A/100. Thus, the sinusoidal current distribution approximates the natural
distribution on thin antennas. Examples of the approximate natural-
current distributions on a number of thin, linear center-fed antennas of

* Ramo and Whinnery, “Fields and Waves in Modern Radio,” John Wiley and Sons,
ne.. New York, 1044, p. 432.
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different length are illustrated in Fig. 5-7. The currents are in phase over

each 3-wavelength section and in opposite phase over the nexi.
Referring to Fig. 5-8, let us now proceed to develop the far-field equa-
tions for a symmetrical, thin, linear, center-fed antenna of length L. The
retarded value of the current at any

To point z on the antenna referred to
distant . . .
poim & point at a distance s is
Ui =1I,

sin[z)\—1r <§ 4+ z)]ei‘"('—%) (5-71)

In (5-71) the function

15 T a|F G

is the form factor for the current
on the antenna. The expression
(L./2) 4+ z is used when z < 0 and
(L./2) — zis used when z > 0. By
regarding the antenna as made up of
a series of infinitesimal dipoles of
length dz, the field of the entire antenna may then be obtained by inte-
grating the fields from all of the dipoles making up the antenna. The far
fields dEy and dH, at a distance s from the infinitesimal dipole dz are (see

Fi6. 5-8. Relations for symmetrical, thin,
linear, center-fed antenna of length L.

Table 5-1),
dE, = j60x[I] sin 6 dz (5-72)
SA
_ jlI]sin @ dz
dH, = T C— (5-73)

Since E, = ZH, = 1207H,, it will suffice to calculate H,. The value of
the magnetic field -H, for the entire antenna is the integral of (5-73) over
the length of the antenna. Thus,

L/2
H, = f dH, (5-74)

—~L/2

Now introducing the value of [I] from (5-71) into (5-73) and substituting
this into (5-74) we have

_ jl,sin g™ f’ 1. [2_«(5 )]__
H,= P3 {_mssm N 2+z e dz

L/2
e ha[E Y o
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In 5-75), 1/s affects only the amplitude, and hence at a large distance it
may be regarded as a constant. Also at a large distance, the difference
between & and r can be neglected in its effect on the amplitude although
its effect on the phase must be considered. Further, from Fig. 5-8,

§=71—2zcosd (5-76)

Substituting (5-76) into (5-75) and also r for s in the amplitude factor,
(5-75) becomes

—_ QI@M {fo . [27_1: (_l;; )jl iw com 9:
He= "0 L P RN
L2 o cos
+ [ sin [% (% - z):le’ c zdz} (5-77)

Since 8 = w/c = 27/\ and B/4r = i), (5-77) may be rewritten as

E{d’ _ jBIo Sin 8 eyw(‘—z) {f ciﬂz cos Gsin [6(5 + z)jl dz

4qr —L/2

L/2
+ f g# o0 P oin [B(é — z)] dz} (5-78)

The integrals are of the form

ar

f ¢ sin (o + ba) do = e lasin (e + ba) — b oos (e + b)) (579)

where for the first integral

a = jB cos 0

b=28

¢ = BL/2
For the second integral a and ¢ are the same as in the first integral, but
b = —B. Carrying through the two integrations, adding the results, and
simplhifying yields

H, = 32[10] l:cos ((BL cos 6)/2) — cos (BL/Q)] (5-80)
T sin ¢

Multiplying H, by Z = 120x gives E, as
5. = {800,] [cos ((BL cos 6)/2) — cos (BL/z)J
y =

r sin § (5-81)
where [1,] = I, ¢’ *(*™)

Equations (5-80) and (5-81) are the expressions for the far fields, H,
and E,, of a symmetrical, center-fed, thin linear antenna of length L.
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The shape of the far-field pattern is given by the factor in the brackets.
The factors preceding the brackets in (5-80) and (5-81) give the instanta-
neous magnitude of the fields as functions of the antenna current and the
distance . To obtain the rms value of the field, we let {/,] equal the rms
current at the location of the current maximum. There is no factor in-
volving phase in (5-80) or (5-81), since the center of the antenna is taken
as the phase center. Henece any phase change of the fields as a function
of  will be a jump of 180° when the pattern factor changes sign.

As examples of the far-field patterns of linear center-fed antennas, three
antennas of different lengths will be considered. Since the amplitude
factor is independent of the length, only the relative field patterns as given
by the pattern factor will be compared.

J\ W >
2 1) (o) ﬁ\

3
-57\
i (¢)
\ Fig. 5-9. Far-ficld patterns of I-wave-

j) length, full-wavelength, and 3-wave-
A length antennas. The antennas are

\9 center-fed, and the current distribution
i (b) is assumed to be sinusoidal.

Case 1. 3-wavelength Antenna. When L = \/2, the pattern factor be-

comes
s
cos | = cos 0)
<2

E = ;
sin 8

(5-84)
This pattern is shown in Fig. 5-9a. It is only slightly more directional
than the pattern of an infinitesimal or short dipole which is given by sin
#. The beam width between half-power points of the }-wavelength an-
tenna is 78° as compared to 90° for the short dipole.

Case 2. Full-wave Antenna. When L = A, the pattern factor becomes

cos (rcos §) + 1

E= 2 sin ¢

(5-85)

This pattern is shown in Fig. 5-9b.
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Case 3. 3-wavelength Antenna. When L = 3 A/2, the pattern factor is

3
cos (§ T COS 0)

E= sin 8 (5-86)
The pattern for this case is presented in Fig. 5-9¢. With the mid-point
of the antenna as phase center, the phase shifts 180° at each null, the
relative phase of the lobes being indicated by the 4+ and — signs. In
all three cases, (a), (b), and (¢), the space pattern is a figure of revolution
of pattern shown around the axis of the antenna.

5-6. Radiation Resistance of {-wavelength Antenna. To find the radia-
tion resistance, the Poynting vector is integrated over a large sphere
yielding the power radiated, and this power is then equated to (I,/v/2)’R,,
where R, is the radiation resistance at a current maximum point and [, is
the peak value in time of the current at this point. The total power radi-
ated W was given in (5-50)" in terms of H, for a short dipole. In (5-50),
| H, | is the absolute value. Hence, the corresponding value of H, for a
linear antenna is obtained from (5-80) by putting | /{I,] | = I,. Substitut-
ing this into (5-50), we obtain

]5I°f f I:COS( cos 0) — cos%:l2

sin 6

2
. [jcos (% cos 0) — ¢os %jl
= 302 f

sin 6

ae de (5-87)

ae (5-88)

Equating the radiated power as given by (5-88) to I3R,/2 we have
IR,

W= 2 (5-89)
and
2
[cos (— cos 0) — COos %]
Ro = 60 f — d6 (5-90)

where the radiation resistance R, is referred to the current maximum. In
the case of a §-wavelength antenna this is at the center of the antenna or
at the terminals of the transmission line (see Fig. 5-7).

Proceeding now to evaluate (5-90), let

u = cos 0 and du = — sin 6 df (5-91)
"W = [[P-ds=§vu/e[[|Htds
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by which (5-90) is transformed to

2
+1 (cos % u — cos %)
P du (5-92)

Ro= 60 [

-1 1 —Uu
But

1 1 1 1 1
I—M—(L+W1—WFEQ+u+1—u) (5-93)
Also putting k = BL/2, (5-92) becomes

+1 2 2
_ (cos ku — cos k) (cos ku — cos k) :l
m—30£1[ Ly e . (594)

This integral gives the radiation resistance for a thin linear antenna of
any length L. For the special case being considered where L = \/2, we
have k = m/2. Thus, in the case of a thin }-wavelength antenna, (5-94)

reduces to
_ 11 cos® (wu/2) , cos’ (ru/2)}
M-3qt[:1+u + B 1, (5-95)
Now in the first term let
1+u="2 and du = d (5-96)
™ g
and in the second term let
f—u=" and du=-% (5-97)
™ g

Noting also that (v — 7)/2 = (= — ¢')/2, Eq. (5-95) becomes
2x 2 _
m=mf9§ﬁ—ﬂ@@ (5-98)
0 v
But cos® (z/2) = 3(1 + cos z) so that

2 — 2r .
R, = 30 /; 14 coi(v ) d = 30[) 1 Ucosvdv (5-99)

The last integral in (5-99) is a form which is tabulated. This integral is
often designated as Cin (z) (see Appendix). Thus,
1 — cosv

Cin (&) = [

4]

dv = Inyx — Ci(x)
=0577 4+ Inzx — Ci(z) (5-100)

where y = ¢ = 1.781, or In ¥ = ¢ = 0.577 = Euler’s constant
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The part of this integral given by
Ci(x) = Inyr — Cin (2) (5-101)

is called the cosine integral. The value of this integral is given by

= 2 4 L3
Ci(x)=LCovsvdv=ln'yx—2%+f!—4—g%+--- (5-102)

When z is small (z < 0.2),
Ci(e) Inyz =057 +Inz (5-103)
When z is large (z > 1),
sin 2

Ci(e) = z (5-104)

T IGi(xy
S
s
\
\

N N

el 1 2 3 4 5 6 7 € 9 ic
X

Fre. 5-10. Cosine integral.

A curve of the cosine integral as a function of « is presented in Fig. 5-10,
It is to be noted that Ci (z) converges around zero at large values of z.
From (5-102) and (5-100) we obtain Cin (z) as an infinite series,

z z* z°

2w Taa Tew (5-105)
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While discussing Cin (z) and Ci (x), mention may be made of another
integral which commonly occurs in impedance calculations. This is the
sine integral,’ Si (x), given by

= [(SRE2, .2
8i () = fo B gy = g~ e (5-106)
When z is small (x < 0.5),
Si(r) >~z (5-107)
When z is large (x >> 1),
. T COST
Si(r) ~ 5 - (5-108)

A curve of the sine integral as a function of x is presented in Fig. 5-11.
It is to be noted that Si (x) converges around =/2 at large values of z.

.8 ~g
\ —
AT \ //

ol

5
Si(x)
I~

8|
a 7L
2F

[ARTEETTR]

OO

( 2 3 4 5 6 7 8 9 10
F1a. 5-11. Sine integral.

Returning now to (5-99), this can be written as
R, = 30 Cin (2r) = 30 X 244 = 73 ohms (5-109)

This is the well-known value for the radiation resistance of a thin, linear,
center-fed, 3-wavelength antenna with sinusoidal current distribution.
The terminal impedance also includes some inductive reactance in series
with B, (see Chap. 10). To make the reactance zero, that is, to make
the antenna resonant, requires that the antenna be a few per cent less
than } wavelength. This shortening also results in a reduction in the
value of the radiation resistance.

1 See Appendix.
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In some cases it may be impossible or at least very tedious to integrate
the radiation-resistance expression analytically. In such cases one can
carry out the integration graphically.'

B-7. Radiation Resistance at a Point Which Is Not a Current Maximum.
If we calculate, for example, the radiation resistance of a 2-wavelength
antenna (see Fig. 5-7) by the above method, we obtain its value at a
current maximum. This is not the point at which the transmission line
is connected. Neglecting antenna losses, the value
of radiation resistance so obtained is the resistance
R, which would appear at the terminals of a trans-
mission line connected at a current maximum in
the antenna, provided that the current distribution
on the antenna is the same as when it is center-fed

as in Fig. 5-7. Since a change of the feed point Ly

from the center of the antenna may change the —=

current distribution, the radiation resistance R, is L ! }
not the value which would be measured on a 2- T
wavelength antenna or on any symmetrical antenna A °

whose length is not an odd number of § wave-

lengths. However, R, can be easily transformed

to the value which would appear across the termi-

nals of the transmission line connected at the center )

current I; at transmis-

of the antenna. . sion-line terminals to
This may be done by equating (5-89) to the current I, at current

power supplied by the transmission line, given by maximum.

IiR,/2, where I, is the current amplitude at the

terminals and R, is the radiation resistance at this point. See Fig. 5-12.

Thus,

Fia. 5-12. Relation of

] o)

2
R, = 50 R, (5-110)
where R, is the radiation resistance caleulated at the current maximum.

Thus, the radiation resistance appearing at the terminals is

I 2
R, = (I—"> R, (5-111)

The current I, at a distance z from the nearest current maximum, as
shown in Fig. 5-12, is given by

I, = I,co8 Bz (5-112)

' An example of such a calculation is given in N. Marchand, “Ultrahigh Frequency
Tranemission and Radiation,” John Wiley and Sons, Inc., New York, 1947, p. 163.
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Therefore, (5-111) can be expressed

R : .

17 cos® Bx (5-113)

When z = 0, R, = R,; but whenz = A4, R, = if B, = 0. However,
the radiation resistance measured at a current minimum (z = A/4) is

not infinite as would be calculated from (5-113), since an actual antenna
is not infinitesimally thin and the cur-

A rent at a minimum point is not zero,
E:::«;:te Nevertheless, the radiation resistance
at a current minimum may in practice
Distance along antenna be very large, that is, thousands of

ohms.
Relative 5-8. Fieldsof a Thin Linear Antenna
%’:\07;-‘ Wave direction with a Uniform Traveling Wave. The
(lagg) —> foregoing discussion has been confined
Distonce along antenna to the case of antennas with sinusoidal

Fre. 5-13. Current amplitude and current distributions. This current
phase relations along an antenna carry-  distribution may be regarded as the
ing a single uniform traveling wave. standing wave produced by two uni-
form (unattenuated) traveling waves
of equal amplitude moving in opposite directions along the antenna. If,
however, only one such wave is present on the antenna, the current dis-
tribution is uniform. The amplitude is a constant along the antenna,
and the phase changes linearly with distance as suggested by Fig. 5-13.

Wave
R o
(a) H Terminated single wire anfenna )
¢ X
WG\V ( ) Long helical beam antenna
(%) —
WavN — j
(d) Lang thick linear antenna
Terminoted rhombic antenna

Fic. 5-14. Various antennas having essentially a single traveling wave.

The condition of a uniform traveling wave on an antenna is one of con-
siderable importance, as this condition may be approximated in a number
of antenna systems. For example, a single-wire antenna terminated in
its characteristic impedance, as in Fig. 5-14a, may have essentially a
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uniform traveling wave." This type of antenna is often referred to as a
Beverage or wave antenna. A terminated rhombic antenna (Fig. 5-14b)
may also have essentially a single traveling wave. Other types of antennas
that have, in the first approximation, a single outgoing traveling wave,
are a long helical beam antenna and a long, thick linear antenna as illus-
trated in Fig. 5-14¢ and (d). These antennas have no terminating im-
pedance but behave similar to terminated antennas. Thus, the thick
linear conductor has a current distribution similar to a thin terminated
linear conductor, and the patterns are similar if the conductor diameter
is not too large. The results for a traveling wave on a linear conductor
can be applied to a helix, as shown in Chap. 7, by considering that
the helix consists of a number of short linear segments. On the linear
antennas, the phase velocity of the traveling wave is substantially equal
to the velocity of light. However, the phase velocity along the conductor
of a helical beam antenna may differ
appreciably from the velocity of
light. Hence, tomake the results ap-
plicable to any of the antenna types
shown in Fig. 5-14, the fields from
an antenna with a traveling wave
will be developed for the general ]
case where the phase velocity v of r
the wave along the conductor may
have any arbitrary value.?

Proceeding now to find the field © / z  —="b z
radiated by a traveling wave on a

P(p.§,2)

% P
¥

Conductar direction
thin linear conductor, let us consider
a conductor of length b coincident
with the z axis and with one end at

Fra. 5-15. Relation of conductor of
length b with single traveling wave to
cylindrical coordinate system,

the origin of a cylindrical coordinate
system (p, £, 2) as in Iig. 5-15. It is assumed that a single, uniform travel-
ing wave is moving to the right along the conductor.

I Since the fields of an antenna are not confined to the immediate vicinity of the
antenna, it is not possible to provide a nonreflecting termination with a lumped imped-
ance. However, a lumped impedance may greatly reduce reflections at the terinination,

2 A, Alford, A discussion of methods employed in calculations of electromagnetic
fields of radiating conductors, Elec. Commun., 16, 70-88, July, 1936. Treats case where
velocity is equal to light.

J. D. Kraus and J. C. Williamson, Characteristics of helical antennas radiating in the
axial mode, J. Applied Phys., 19, 87-96, January, 1948. Treats general case.

J. Grosskopf, Uber dic Verwendung zweier Losungsansitze der Maxwellschen
Gleichungen bei der Berechnung der electromagnetischen Felder strahlender Leiter,
Hochfrequenztechnik und Electroakustik, 49, 205-211, June, 1937. Treats casc where
veloaty is equal to light.
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Since the current is entirely in the z direction, the magnetic field has
but one¢ component H;. The ¢ direction is normal to the page at P in
Fig. 5-15, and its positive sense is outward from the page. The magnetic
field H, can be obtained from the Hertz vector II. Since the current is
entirely in the z direction, the Hertz vector has only a z component. Thus,

H, = jod(7 X M) = —jue ‘% (5-114)
where 11, is the z component of the retarded Hertz vector at the point P,
as given by
__1. 7
L= g fo U, (5-115)
where
[I] = I,si (z—’i—z—‘> (5-116
= I,sinw c  p -116)

where 2z, = a point on the conductor
and

(SRR

v=pc or p= (5-117)
In (5-117), p is the ratio of the velocity along the conductor v to the
velocity of light ¢. This ratio will be called the relative phase velocity.

All the conditions required for calculating the magnetic field due to a
single traveling wave on the linear conductor are contained in the relations
(5-114) through (5-117). That is, if [I] in (5-116) is substituted into
(5-115), and II, from this equation into (5-114), and the indicated opera-
tions performed, we obtain the field H;. ILet us now proceed to carry
through this calculation. To do this, let

— s T _& _
= s (5-118)
Now since
r=[~-2)"+ (5-119)
we have
b _z—z 1
de, rc P (5-120)
Equation (5-115) now becomes
I / sin wu
* Amjwe J,, 2 — 2, —1/p du (5-121)
where the new limits are
b
U, =t — % and Uy = £ — % - (5-122)
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Introducing (5-121) into (5-114) we have

Ic o ™ sin wu
H,= -2 —

dropli z—2z —r/p™ (5-123)

Confining our attention now to the far field, that is, at a large distance r,
which is very much larger than b, the quantity z, can be neglected and the
denominator of the integrand considered to be a constant z — r/p. There-
fore (5-123) becomes

H, = _Ie 9 (— cos wi; 4 cosmh) (5-124)

4rw Op z—r/p
Performing the differentiation with respect to p, (5-124) becomes,

~ Tw
4xr
_ [ (z — r/p)(sin wuz — sin wur) + (A/27p)(cos wus — cos wii)
(z —r/p)*

At arbitrarily large distances, that is, where

] (5-125)

A
z—r/p|> 2P
and for the case where

sin wu; — sin wu, #% 0

(5-125) reduces to

_ I, siny . o
H, = Imr oos v — 1/p (sin wu, — sin wu,) (5-126)

where the relations have been introduced for r >> b that

~N N

= cosy and

= o

= siny (5-127)

Introducing the values of u, and u, into (5-126) from (5-122) and by
trigonometric manipulation, (5-127) can be put in the form,

_ dop {¥_11Mk_ [ wb oo :l}
H = 2 \1 = p cosy bln2pc(1 P COs )

£
/ [w(t —~ Z—) + %%c (1 — p cos 'y):l (5-128)

Equation (5-128) gives the instantaneous magnetic field at large dis-
tances from the linear antenna carrying a single traveling wave of ampli-
tude I,, in terms of the distance r;, direction angle v, relative phase
velocity p, radian frequency w, conductor length b, time ¢, and velocity
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of light ¢. The distant or far electric field E, is cbtained from H, by
E, = HZ where Z = 377 ohms.
In (5-128) the shape of the field pattern is given by the expression in

p=L0 p=0.8 p=0.6

51°

Wave
/ direction

eV

(") (b) (c)

Fic. 5-16. Far-field patterns of linear $-wavelength antenna carrying a uniform travel-
ing wave (to right) for three conditions of relative phase velocity (p = 1.0, 0.8, and 0.6).
The tilt angle 7 and the half-power beam widths are indicated for each pattern.

the braces { }. The expression indicated as an angle Z gives the phase
of the field referred to the origin of the coordinates (see Fig. 5-15) as the
phase center. The relative phase
pattern at a constant distance is
given by the right-hand term,

Wave (wb/2pc) (1 — p cos ).

direction .

—— Several examples will now be con-
l«—5A — sidered to illustrate the nature of

the field patterns obtained on linear
conductors carrying a uniform trav-
Teod eling wave.

Case 1. Linear -wavelength An~
tenna. Let us consider a linear
antenna, % wavelength long as
measured in free-space wavelengths.
Assuming that p = 1, that is, the
phase velocity along the antenna is equal to that of light, the pattern
calculated from (5-128) is as shown by Fig. 5-16a. The difference between
this pattern and that for a linear 3-wavelength antenna with a sinusoidal
current distribution or standing wave (Fig. 5-9a) is striking. The lobes
are sharper and also tilted forward in the case of the traveling wave

p=L0

F16. 5-17. Far-field pattern of linear five-
wavelength antenna carrying a uniform
traveling wave (p = 1).
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antenna (Fig. 5-16a). The tilt is in the direction of the traveling wave.
The tilt angle 7 of the direction of maximum radiation is 25° and the
beam width between half-power points is about 60°. This is in contrast
to r = 0 and a beam width of 78° for the }-wavelength antenna with a
sinusoidal current distribution or standing wave.

As the phase velocity of the traveling wave on the }-wavelength antenna
is reduced, the tilt angle is increased and the beam width reduced further
as illustrated by the patterns of Figs. 5-16b and (¢) which are for the
cases of p = 0.8 and p = 0.6, respectively.

Case 2. Linear Antenna 5 Wavelengths Long. The field pattern for a
5-wavelength linear antenna with a single traveling wave is presented
in Fig. 5-17 for the case where p = 1 (that is, v = ¢). This pattern is
typical of those for long, terminated antennas, the radiation being beamed
forward in a cone having the antenna as its axis. The tilt angle for this
antenna is about 68°. As the length of the antenna is increased, the
tilt angle increases further, reaching a value of about 78° when the length
is 20 wavelengths for » = 1.

PROBLEMS

5-1. a. Two equal static electric charges of opposite sign separated by a distance
L constitute a static electric dipole. Show that the electric potential at a
distance r from such a dipole is given by

QL cos 0
drer®

where @ is the magnitude of each charge and 8 is the angle between the
radius r and the line joining the charges (axis of dipole). It is assumed
that r is very large compared to L.

b. Find the vector value of the electric field E at a large distance from a
static electrie dipole by taking the gradient of the potential expression in
part (a).

6-2. Using the value of the Hertz vector for a short oscillating dipole as given
in (5-68) obtain E and H by the Hertz vector method, that is, by performing the
operations indicated in (5-64) and (5-65), and confirm the fact that the fields so ob-
tained are identical with the fields given in the column headed “General Expression”
in Table 5-1.

5-3. The instantaneous current distribution of a thin linear center-fed antenna
2 wavelengths long is sinusoidal as shown.

V =

L 2\ 1
N 1l N’
a. Calculate and plot the pattern of the far field.
b. What is the radiation resistance referred to a current loop?

¢. What is the radiation resistance at the transmission-line terminals as
shown?
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d. What is the radiation resistance A/8 from a current loop? o
5-4. Assume that the curtent is of uniform magnitude and in phase along the
entire length of a A/2 thin linear element. '
a. Calculate and plot the pattern of the far field.
b. What is the radiation resistance?
¢. Tabulate for comparison
(1) Radiation resistance of part b above,
(2) Radiation resistance at the current loop of a A/2 thin linear element
with sinusoidal in-phase current distribution.
(3) Radiation resistance of a A/2 dipole calculated by means of the short
dipole formula.
d. Discussthethreeresults tabulated in part ¢ and reasons for the differences.
5-b. Calculate and plot the radiation-field pattern in the plane of two thin
linear 1-wavelength antennas with equal in-phase currents and the spacing rela-
tionship shown. Assume sinusoidal current distributions.

'y
%
— i

54+___:_xé

5-6. a. Express in integral form the retarded vector potential at a distance r
from the center of a thin linear 3-wavelength antenna. The antenna is
parallel to the y axis, and its center is at the origin. The current is in
phase along the antenna, and its magnitude corresponds to a cosine
function of distance from the origin.

b. What relations involving the vector potential yield the electric and mag-
netic fields (E and H) at a large distance?
c. What is the integral form for the retarded Hertz vector at a distance r
from the %-wavelength antenna of part (a)?
6-7. Calculate the field pattern in the plane of the full-wave antenna shown in the

\ /
30° 0
p 2
gt Yo 0

figure. Assume that the current distribution on each wire is sinusoidal and that all

currents are in phase. Plot the pattern.
§-8. a. Calculate and plot the far-field pattern in the plane of a thin linear ele-
ment one free-space wavelength long, carrying a single uniform traveling

wave for 2 cases of the relative phase velocity p = 1 and 0.5.
b. Repeat for the single case of an element 10 A long and p = 1.
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CHAPTER 6 .

THE LOOP ANTENNA

THIS chapter is devoted to the loop antenna. First, the field pattern
of a small loop is derived very simply by considering that the loop is
square and consists of four short linear dipoles. The same field equations
are then developed by a somewhat longer method based on the assumption
that the small loop is equivalent to a short magnetic dipole. Finally, the
general case of the loop antenna with uniform current is treated for loops
of any size. Although most of the development concerns circular loops,
square loops are also discussed, and it is shown that the far fields of circular
and square loops of the same area are the same when they are small but
different when they are large.

6-1. The Small Loop. A very simple method of finding the field pattern
of a small loop is treated in this section. Consider a ecircular loop of
radius @ with a uniform in-phase current as suggested by Fig. 6-1a. The

4
Es
g
He
3
2a I d I Square 4 2
- loop Y
1
1 [
) 1
> X
F1e. 6-1. Circular loop (a) and square Fic. 6-2. Relation of square loop tc cor
loop (b). ordinates.

radius a is very small compared to the wavelength (¢ << X). Suppose

now that the circular loop is represented by a square loop of side length

d, also with a uniform in-phase current, as shown in Fig. 6-1b. In this

way, the loop can be treated as four short linear dipoles, whose properties
155
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we have already investigated in Chap. 5. Let d be chosen so that the
area of the square loop is the same as the area of the circular loop. That
is,

& = wd’ (6-1)

If the loop is oriented as in Fig. 6-2, its far electric field has only an
E, component. To find the far-field pattern in the y-z plane, it is only
necessary to consider two of the four small linear dipoles (2 and 4). A
cross section through the loop in the y-z plane is presented in Fig. 6-3.

Z To distont
point

| d 1 —Dipole Y
2

Fig. 6-3. Construction for finding far field of dipoles 2 and 4 of square loop.

Since the individual small dipoles 2 and 4 are nondirectional in the y-z
plane, the field pattern of the loop in this plane is the same as that for
two isotropic point sources as treated in Sec. 4-2. Thus,

E,= ~E,e"* + E,p eV (6-2)
where E,, = electric field from individual dipole and
¢=2;\r—l—isinﬁ=d,sin0 (6-3)
1t follows that
E, = —2E, sin (—g—' sin 0) (6-0)

The factor 5 in (6-4) indicates that the total field E, is in phase quadrature
with the field E,, of the individual dipole. This may be readily seen by a
vector construction of the type of Fig. 4-1b of Chap. 4. Now if d <, (6-4)
can be written

E‘ = —jE¢0 df Sin 0 (6_5)

The far field of the individual dipole was developed in Chap. 5, being
given in Table 5-1. In developing the dipole formula, the dipole was in
the z direction, whereas in the present case it is in the z direction (see
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Tigs. 6-2 and 6-3). The angle 6 in the dipole formula is measured from
the dipole axis and is 90° in the present case. The angle 0 in (6-5) is a
different angle with respect to the dipole, being as shown in Figs. 6-2 and
6-3. Thus, we have for the far field I, of the individual dipole

160x 111
E, = J——Ti\-]— (6-6)

where [I] is the retarded current on the dipole and r is the distance from
the dipole. Substituting (6-6) in (6-5) then gives

_ 60x[I]Ld, sin 8

z, ™

(6-7)
But the length L of the short dipole is the same as d, that is, L = d.
Noting also that d, = 2xd/\ and that the area A of the loop is d°, (6-7)
becomes

_ 120x*[I}sin 6 A
- 2

B, r A

(6-8)
This is the instantaneous value of the E, component of the far field of a
small loop of area A. The peak value of the field is obtained by replacing
{I]1by I,, where I, is the peak current in time on the loop. The other compo-
nent of the far field of the loop is Hy,

which is obtained from (6-8) by divid- - .atdm
ing by the intrinsic impedance of the ”},“
medium, in this case, free space. Thus, QILB 1 L h;‘
E ingA N
s gl = O 00 (b)
a)

6-2. The Short Magnetic Dipole. pg, 6-4. (a) Relation of small loop
Equivalence to a Loop. Another of area A to short magnetic dipole
method of treating the small loop is by oflengthl. (b) Short magnetic dipole.
making use of its equivalence to a
short magnetic dipole. Thus, a small loop of area A and carrying a uni-
form in-phase electric current I is replaced by an equivalent magnetic
dipole of length I as shown in Fig. 6-4a. The magnetic dipole is assumed
to carry a fictitious magnetic current I,,.

The relation between the loop and its equivalent magnetic dipole will
now be developed. The moment of the magnetic dipole is ¢,.l where ¢, is
the pole strength at each end as in Fig. 6-4b. The magnetic current is
related to this pole strength by

I.= —u %qf (6-10)
where I,, = I

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



158 ANTENNAS [CHaP. ¢
Integrating (6-10) with respect to time,

Joous
The magnetic moment of the loop is I4. Equating this to the moment
of the magnetic dipole, we have

gul = IA (6-12)
Substituting (6-11) in (6-12),
Ll _ 14 (6-13)
Joors
This may be reexpressed as,
1.0 = —juuld = —j21rf))—t uIA = —j%%m (6-14)
or
Il = —j2401r21% (6-15)
In retarded form (6-15) is
L)L = —2400°11] 2 (6-16)

where [1,,] = I.e'“(t9)
[I] = L' ()

Equations (6-15) and (6-16) relate a
loop of area A and carrying a cur-
rent I to its equivalent magnetic
dipole of length ! carrying a fictitious
magnetic current I,,.

6-3. The Short Magnetic Dipole.
Far Fields. In this section the far
fields of a short magnetic dipole will
be caleulated. Then applying the
equivalence relation between a loop
and magnetic dipole developed in
Sec. 6-2, we obtain the far field of a small circular loop.

The method of finding the fields of a short magnetie dipole is formally
the same as that employed in Sec. 5-2 to find the far field of a short electric
dipole. The only difference is that electric current I is replaced by a

Fra. 6-5. Relation of short magnetic
dipole to coordinates.
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fictitious magnetic current [,, and that E is replaced by H. Then with
the magnetic dipole oriented as in Fig. 6-5, the retarded vector potential
F of the magnetic current is

F:i[ﬁ%ﬂ@:ki[ﬁq@w volts’sec o1y

e T amp mefer

The vecetor potential F has only a 2z component F,. Introducing the value
of the retarded current

_ I-lIm() +1/2 (Ziw(l—%)

F, = il B . dz (6-18)

If r > land A >> I, the phase difference of the contributions of the various
current elements of length dz along the magnetic dipole can be neglected.
Hence, the integrand in (6-18) may be regarded as a constant, and (6-18)
becomes

_ ul,le’* (=2

F, ryme (6-19)
The electric field E is obtained from F by the relation,
E=%VXF (6-20)

Resolving F, into its spherical or polar coordinate components F, and
F, and taking the curl of F as in (6-20), the K, component of the electric
field is found to be

, = L=llsin 0 (G | %> (6-21)

4 cr r

This is the only component of the electric field produced by a magnetic
dipole oriented as in Fig. 6-5. It is interesting to note that (6-21) is
identical with the expression for H, developed for a short electrie dipole,
provided that £ in (6-21) is replaced by H and I,, by I (see Table 5-1).

The relation of (6-21) applies at any distance from the magnetic dipole,
orovided only that » > [ and A 3> . At a large distance r the second
term of (6-21) can be neglected, and (6-21) becomes

[ nJwlsin §  j[I.]sin g1

This is the far electric field from a short magnetic dipole of length ! and
carrying & fictitious magnetic current I,. The far magnetic field H, of
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the magnetic dipole is related to E, by the intrinsic impedance of the
medium, in this case, free space. Hence

jlla)sin 01

Ho =5 0m

(6-23)

Substituting now for the moment [I,.)lin (6-22) and (6-23) the equivalent
value for a loop as given by (6-16), we obtain

. _ 120" sin 0 4
2

by = T“"‘ X (6—24)
and
f, = Tlsm o 9% (6-25)

These are then the far-field equations for a small loop of area A carrying
a current I. They are identical with (6-8) and (6-9) developed in Sec. 6-1
by the method using a square loop of four short linear electric dipoles.
The field pattern in the plane of a circular loop with uniform current is by
symmetry a circle. The far-field pattern in the plane of a small square loop
with uniform current may also be shown to be a circle (Prob. 6-6). Thus,
it appears that the far fields of small circular and square loops are identical
provided that both have the same areq.

Both E, and H, vary as the sine of the angle @ as illustrated in Fig. 6-6.
The fields are independent of ¢. Hence, the space patterns are figures of
revolution of the pattern of Fig. 6-6 around the polar axis, the form being
that of a doughnut. This pattern is identical in shape to that of a short

electric dipole oriented parallel to the polar
Polor or z axis.

oxis 6-4. Comparison of Far Fields of Small
z Loop and Short Dipole. It is of interest to
compate the far-field expressions for a small
loop with those for a short electric dipole.
The comparison is made in Table 6-1. The
Loo-V): Y presence of the operator j in the dipole ex-
pressions and its absence in the loop equations
Fic. 6-6. Far-field patternfor  indicate that the fields of the electric dipole
& small leop. and of the loop are in time phase quadrature,
the current I being in the same phase in
both dipole and loop. This quadrature relationship is a fundamental

difference between the fields of loops and dipoles.

The formulas in Table 6-1 apply to a loop oriented as in Fig. 6-2 and
a dipole oriented parallel to the polar or z axis. The formulas are exact
only for vanishingly small loops and dipoles, However, they are good
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approximations for loops up to v wavelength in diameter and dipoles up
to ¥y wavelength long.

TABLE 6-1
FAR FIELDS OF SMALL ELECTRIC DIPOLES AND LOOPS

Field Electric dipole Loop

_ j60m[I]sin § L _ 1207°[I]sin 6 A

Electric E, E

r A ¢ r 2\
1] si Ilsing A
Magnetic H, = 7[_]:7@% H, - L:ma 4

6-b. The Loop Antenna. General Case. The general case of a loop
antenna with uniform, in-phase cur-
rent will now be discussed. The size z
of the loop is not restricted to a small Polar axis
value compared to the wavelength dAg
as in the preceding sections but may da,” ' \e
assume any value. The method of =0)
treatment follows that given by 1
Foster.
Let the loop of radius a be located 1o #oint P
. p in x-z plane !
with its center at the origin of the
coordinates as in Fig. 6-7. The cur-
rent I is uniform and in phase ‘ d\?/\ j; )A\/'OOD
around the loop. Although this con- Io
dition is readily obtained when the 4
loop is small, it is not a natural con-
dition for large loops energized at a
point. For loops with perimeters of
about § wavelength or larger, phase X
shifters of some type must be intro- Fic. 6-7. Loop of any radius a with rela-
duced at intervals around the tjon to coordinates.
periphery in order to approximate a
uniform, in-phase current on the loop. Assuming that the current is uni-

1Donald Foster, Loop Antennas with Uniform Current, Proc. I.R.E., 32, 603-607,
October, 1944,

A discussion of circular loops of circumference less than } wavelength (Cy < ) with
aonuniform current distribution is given by G. Glinski, Note on Circular Loop Antennas
with Nonuniform Current Distribution, J. Applied Phys., 18, 638-644, July, 1947,
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form and in phase, the far-field expressions will be derived with the aid of
the vector potential of the electric current. The vector potential will first
be developed for a pair of short, diametrically opposed electric dipoles of
length adg, as in Fig. 6-7. Then integrating over the loop, the total vector

7 potential is obtained, and from this

 ToP the far-field components are derived.
//:\ Since the current is confined to
the loop, the only component of the

vector potential having a value is
A,. The other components are zero:
8 Ay = A4, = 0. The infinitesimal
value at the point P of the ¢ com-
R ; }Zﬁo.cowsin 8=y  ponent of A from two diametrically

X — opposed infinitesimal dipoles is
260 cos ¢
K g cos ) u dM

Perimeter of loop dA¢ = Ay (6‘26)

Fie. 6-8. Cross section in z-z plane .
through loop of Fig. 6-7. where dM is the current moment

due to one pair of diametrically op~
posed infinitesimal dipoles of length, a d¢. In the ¢ = 0 plane (Fig. 6-7)
the ¢ component of the retarded current moment due to one dipole is

[I] a do cos ¢ (6-27)

where [I] = I Oe"”("i) and I, is the peak current in time on the loop.

Figure 6-8 is a cross section through the loop in the z-z plane of Fig. 6-7.
Referring now to Fig. 6-8, the resultant moment dM at a large distance
due to a pair of diametrically opposed dipoles is

dM = 2j[I]a d¢ cos ¢ sin (6-28)

o &

where ¢ = 28a cos ¢ sin 8 radians
Introducing this value for ¢ into (6-28) we have

dM = 2j|1}a cos ¢ [sin (Ba cos ¢ sin 6)] de (6-29)
Now substituting (6-29) into (6-26) and integrating,

A, = jull]a f sin (Ba cos ¢ sin ) cos ¢ do (6-30}
2nr 0
or
Ay = 1—‘%‘92 J:(Ba sin 6) (6-31)

where J, is a Bessel function of the first order and of argument (8a sin 6).
The integration of (6-30) is performed on equivalent dipoles which are
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all situated at the origin but have different. orientations with respect to ¢.
The retarded current [I] is referred to the origin and, hence, is constant
in the integration.

The far electric field of the loop has only a ¢ component given by

E, = —jwd, (6-32)
Substituting the value of A, from (6-31) into (6-32) yields,

E, = %[f_]{_l J1(Ba s, 6) (6-33)
or
B, = @’ié‘—‘m J(a sin 0) (6-34)

This expression gives the instantaneous electric field at a large distance
7 from a loop of any radius a. The peak value of I7, is obtained by putting
[I] = I,, where I, is the peak value (in time) of the current on the loop.
The magnetic fleld H; at a large distance is related to E, by the intrinsic
impedance of the medium, in this case, free space. Thus,

Hy = %[71—]- T(8a sin 6) (6-35)
This expression gives the instantaneous magnetic field at a large distance
r from a loop of any radius a.

6-6. Far-field Patterns of Circular Loop Antennas with Uniform Current.
The far-field patterns for a loop of any size are given by (6-34) and (6-35).
They differ in magnitude by a factor (K, = H,Z). For a loop of a given
size, Ba is constant and the shape of the far-field pattern is given as a func-

tion of 8 by
J1(C) sin 6) (6-36)
where C, is the circumference of the loop in wavelengths. That is,
¢ = 2% = g (6-37)

The value of sin 6 as a function of ¢ ranges in magnitude between zero
and unity. When 8 = 90°, the relative field is J,(C)), and as 8 decreases
to zero, the values of the relative field vary in accordance with the J, curve
from J,(C)) to zero. This is illustrated by Fig. 6-9 in which a rectified
first-order Bessel curve is shown as a function of Cy, sin 8.

As an example, let us find the pattern for a loop 1 wavelength in diameter
(Ch = = = 3.14). The relative field in the direction § = 90° is then 0.285.
As 0 decreases, the field intensity rises, reaching a maximum of 0.582 at
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angle 0 of about 36°. Ags § decreases further, the field intensity also de-
creases, reaching zero at § = 0°. The pattern in the other four quadrants
is symmetrical, the complete pattern being as presented in Fig. 6-10b.

N
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_ 05 /- \\

< 04— =

%0.3 7 /'\\

s / / R A~

o O

(@]

NN NS

"4 5 6 7 8 9 1011 213 4 B I6
90 Casin @

F1a. 6-9. Pattern chart for loops with uniform current as given by first-order Bessel
curve as a function of Cj sin 6.

It is possible to obtain the pattern by a graphical construction. This
is illustrated for the case we have just considered of C, = = by the auxiliary
circle quadrant in Fig. 6-9. The angle  is laid off around the arc of the
circle. The radius of the circle is equal to C, sin 90° = C,, which in this
case is . The field in the direction ¢ = 60°, for instance, is then given by
drawing a perpendicular to the axis of the abscissa and continuing this
perpendicular until it intersects the J, curve giving a value of relative
field, in this case, of 0.443, as shown in Fig. 6-9.

Turning now to a consideration of loops of other size, it is to be noted
fromJ'Fig. 6-9 that the maximum field is in the direction ¢ = 90° for all
loops which are less than 1.84 wavelengths in circumference (less than
0.585 wavelength in diameter). As an example, the pattern for a loop
vy wavelength in diameter is presented in Fig. 6-10a. The pattern is
practically a sine pattern as would be obtained with a very small loop.

By way of contrast, the pattern for a loop 5 wavelengths in diameter
is shown in Fig. 6-10c. In this case, which is typical for large circular
loops with uniform current, the maximum field is in a direction nearly
normal to the plane of the loop, while the field in the direction of the
plane of the loop is small.

All patterns in Fig. 6-10 are adjusted to the same maximum. The
space patterns for the three cases in Fig. 6-10 are figures of revolution of
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the patterns around the polar axis. It is to be noted that the field exactly
normal to the loop is always zerc, regardless of the size of the loop.

Diameter=-,)(—f_,
C\=0314

m Lo ]

Y
(AT

Diameter=

C\=3.14 Diameter=5Xx
CX= 15.7

Fig. 6-10. Far-field patterns of loops of 0.1, 1, and 5 wavelengths diameter. Uniform
in-phase current is assumed on the loops.

6-7. The Small Loop as a Special Case. The relations of (6-34) and
(6-35) apply to loops of any size. It will now be shown that for the special
case of a small loop, these expressions reduce to the ones obtained pre-
viously.

For small arguments of the first-order Bessel function, the following
approximate relation can be used.

Ji(z) = g (6-38)

where z is any variable. When z = %, the approximation of (6-38) is
about 1 per cent in error. The relation becomes exact as = approaches
zero. Thus, if the perimeter of the loop is % wavelength or less (C) < 3).

! For small arguments, the J, curve is nearly linear (see Fig. 6-9). The general rela-
tion for a Bessel function of any order n is J.(x) ~ z7/n!2" where | z | < 1.
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(6-38) may be applied to (6-34) and (6-35) with an error which is about
1 per cent or less. Equations (6-34) and (6-35) then become

_ 60mBa[l]Basin &  120r*[I]sin § A
- - 2

E, 2r r A (6-39)
__BalllBasin 8 w[I]sin § A
H, = 4y - r » (6-40)

These far-field equations for a small loop are identical with those obtained

in earlier sections (see Table 6-1).
6-8. Radiation Resistance of Loops.! To find the radiation resistance of
a loop antenna, the Poynting vector is integrated over

Io a large sphere yielding the total power W radiated. This
power is then equated to the square of the effective current
a on the loop times the radiation resistance E,.
Iy
=5 B (6-41)

In r/{0 where I, = peak current in time on the loop. The radia-
tion resistance so obtained is the value which would appear
at the loop terminals connected to the transmission line as
shown in Fig. 6-11. The situation shown in Fig. 6-11

Fic. 6-11. Toop 0CCUIS naturally only on small loops. However, it will be
and transmission  assumed that the current is uniform and in phase for any
line. radius «a, this condition being obtained by means of phase
shifters, multiple feeds, or other devices (see Sec. 14-20).

The average Poynting vector of a far field is given by

P,=L|H|’Re Z (6-42)

where | H | is the absolute value of the magnetic field and Z is the intrinsic
impedance of the medium, which in this case is free space. Substituting
the absolute value of H, from (6-35) for | H | in (6-42) yields

P, = ﬁ(fgqb—)— J%(Ba sin 6) (6-43)

The total power radiated W is the integral of P, over a large sphere.
That is,

W= f f P, ds = 15x(al,)’ f i ]; " JiBasin O)sin 640 ds  (644)

1The procedure follows that given by Foster, Loop Antennas with Uniform Current,
Proc. I.R.E., 32, 603-607, October, 1944
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or

W = 30+%(8al,)’ / J*(Ba sin 0) sin 6 d6 (6-45)

In the case of aloop that is small in terms of wavelengths, the approxima-
tion of (6-38) can be applied. Thus (6-45) reduces to

= % = (Ba)'Ts f sin’ §d6 = 10+°8'a*I} (6-46)
1]
But the area A = ra® so (6-46) becomes

W = 108*A°I; (6-47)

Assuming no antenna losses, this power equals the power delivered to the
loop terminals as given by (6-41). Therefore,

2
R 2= w0gar; (6-48)
and
A 2
R, = 31’171<P> = 197C; ohms (6-49)
or
A 2
k. ~31 ,200<X§> ohms (6-50)

This is the radiation resistance of a small single-turn loop antenna, circular
or square, with uniform in-phase current. The relation is about 2 per
cent in error when the loop perimeter is § wavelength. A circular loop of
this perimeter has a diameter of about % wavelength. Its radiation re-
sistance by (6-50) is nearly 2.5 ohms.

The radiation resistance of a small loop consisting of one or more turns
is given by*

A 2
R, = 31,200(n P) ohms

where n.= number of turns

Let us now proceed to find the radiation resistance of a circular loop of
any radius a. To do this we must integrate (6-45). However, the integral
of (6-45) may be reexpressed. Thus, in general,’

f Ji(z sin ) sin 6 d6 = 1 f Jo(y) dy (6-51)
0 T Jo

1A. Alford and A. G. Kandoian, Ultrahigh-frequency Loop Antennas, Trans.
A.LE.E., b9, 843-848, 1940.

2G. N. Watson, ‘“A Treatisc on the Theory of Bessel Functions,” Cambridge Uni-
versity Press, London, 1922,
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where y is any function
Applying (6-51) to (6-45) we obtain

28

W = 30xBal? Ja(y) dy (6-52)
0

Equating (6-52) and (6-41) and putting Ba = C, yields

20

R, = 60x°C, J:(y)dy  ohms (6-53)
0

This is the radiation resistance as given by Foster for a single-turn circular
loop with uniform in-phase current and of any circumference C,.
When the loop is large (C. > 5), we can use the approximation

20

J(y) dy >~ 1 (6-54)

so that (6-53) reduces to

R, = 60s°C, = 592C, = 3,720% (6-55)

For a loop of 10 wavelengths perimeter, the radiation resistance by (6-55)
is nearly 6,000 ohms.

For values of C\ between § and 5 the integral in (6-53) can be evaluated
using the transformation

20 20

Jay) dy = \ Jo(y) dy — 2J.(2C)) (6-56)

where the expressions on the right of (6-56) are tabulated functions.’
For perimeters of over 5 wavelengths (C, > 5) one can also use the
asymptotic development,

2x 1 . 11
fo Jo(y) dy >~ 1 — = [Sln (213 - Z) + 16z 8 (2x - E)] (6-57)

where z = fa = C,
For small values of z, one can use a series obtained by integrating the
ascending power series for J,. Thus,

2 4 6 L
T T x

2z _ x_a( %’ z* __:E__. )
fo T dy =3\l =5+ 55~ 1080 T 51680 ) (&9

When z = C, = 2 (perimeter 2 wavelengths), the result with four terms

1 The integral involving J, for the interval 0 < z < 5 (where z = C)) is given by
A. N. Lowan and M. Abramowitz, J. Math. Phys., 22, 2-12, May, 1943; and also by
Nail. Bur. Standards Tech. Memo 20.

Values of J; are given in many tables. See, for example, Jahnke and Emde, “Tables
of Functions,” B. G. Teubner, Leipzig, 1933, p. 157.
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is about 2 per cent in error. This same percentage error is obtained with
one term when the perimeter is about 3 wavelength.

A graph showing the radiation resistance of single-turn loops with
uniform current as a function of the circumference in wavelengths is pre-
sented in Fig. 6-12. The data for the curve are based on Foster’s formulas

10,000 P

1
JQ?C; e =
'\592C7«

3,000

,’l

1,000 7
/
300

/

=
.
i

100

30

Rodiation resistance,R,,in ohms
o
'-\\4

01 2 3 4 5 6 7 8 9 0
Loop circumference, Ca

Fie. 6-12. Radiation resistance of single-turn circular loop with uniform, in-phase
current as a function of the loop circumference in wavelengths, C\.

as given above. Curves for the approximate formulas of small and large
loops are shown by the dashed lines.

6-9. Directivity of Circular Loop Antennas with Uniform Current. The
directivity D of an antenna was defined in (2-31) as the ratio of maximum
radiation intensity to the average radiation intensity. The maximum
radiation intensity for a loop antenna is given by 7° times (6-43). The aver-
age radiation intensity is given by (6-45) divided by 4w. Thus, the direc-
tivity of a loop is

o Ja(y) dy

This is Foster's expression for the directivity of a circular loop with
uniform in-phase current of any circumference C,. The angle 8 in (6-59)
is the value for which the field is a maximum.

For a small loop (C, < }), the directivity expression reduces to
3

sin” § = 5 (6-60)

(6-59)

D=

[SRE)
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since the field is a maximum at 6 = 90°. The value of § is the same as
for a short electric dipole. This is to be expected since the pattern of a
short dipole is the same as for a small loop.

For a large loop (Cy > 5), (6-59) reduces to

From Fig. 6-9 we note that for any loop with €, > 1.84, the maximum
value of J,(C, sin 6) is 0.582. Thus, the directivity expression of (6-61)
for a large loop becomes

D = 0.68C, (6-62)

The directivity of a loop antenna as a function of the loop circumference
() is presented in Fig. 6-13. Curves based on the approximate relations
of (6-60) and (6-62) for small and large loops are indicated by dashed lines.
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L Directivity of isotropic source

o] ! 2 3 4 5 6 7 8 9 10
Loop Circumference, Cx

Fig. 6-13. Directivity of circular loop antenna with uniform, in-phase current as a
function of loop circumference in wavelengths, Ca. (After Foster.)

6-10. Table of Loop Formulas. The relations developed in the preceding
sections are summarized in Table 6-2." The general and large loop formulas
are based on Foster’s results.

6-11. Square Loops. It was shown in Sec. 6-3 that the far-field patterns
of square and circular loops of the same area are identical when the loops
are small (4 < A?/100). As a generalization, we may say that the prop-
erties depend only on the area and that the shape of the loop has no effect
when the loop is small. However, this is not the case when the loop is
large. The pattern of a circular loop of any size is independent of the
angle ¢ but is a function of ¢ (see Fig. 6-2). On the other hand, the pattern
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of a large square loop is a function of both 6 and ¢. Referring to Fig. 6-14,
the pattern in a plane normal to the plane of the loop and parallel to two
sides (1 and 3), as indicated by the line 4 4’, is simply the pattern of two
point sources representing sides 2 and 4 of the loop. The pattern in a

TABLE 6-2
FORMULAS FOR CIRCULAR LOOPS WITH UNIFORM CURRENT

3 *
. General expression anzll)\lé)/ol% 0 Large loop
Quantity (any size loop) ) 1 C>5
G<3
20r* i
Far E, 60n[I1C\J,(Cy\ sin 8)f  120x7[I] sin 05\{{5 Same as general
r r
Far H, G, (G sin 6) mlZ] sin 6 % Same as general
2r r A
Radiation 607°C! f 2CXJA (y) dyl31 200(4)2 = 197(3]3,720 & = 592(,
resistance, ohms > 2 ’ N TN
Directivity 20, 71(Cy sin 6) 3 1252 = 0.680,
I3 Ta(y) dy 2 A

A = area of loop; C) = circumfcrence of eircular loop, wavelengths.

*The small loop formulas apply not only to circular loops but also to square loops of
area A and in fact to small loops of any shape having an area 4. The formula involving
C, applies, of eourse, only to a circular loop.

plane normal to the plane of the loop and passing through diagonal cor-
ners, as indicated by the line BB’, is different. The complete range in
the pattern variation as a function of ¢ is contained in this 45° interval
between AA’ and BB’ in Fig. 6-14.

An additional difference of large circular and square loops is in the
6 patterns. For instance, Fig. 6-10¢ shows the pattern as a function of 6
for a circular loop 5 wavelengths in diameter. By way of comparison, the
pattern for a square loop of the same area is presented in Fig. 6-15. The
square loop is 4.44 wavelengths on a side. The pattern is in a plane
perpendicular to the plane of the loop and parallel to the sides (plane
contains 44’ in Fig. 6-14). Comparing Figs. 6-10c and 6-15, we note
that the pattern lobes of the circular loop decrease in magnitude as 6
approaches 90° while the lobes of the square loop are of equal magnitude.
This llustrates the difference of the Bessel function pattern of the circular
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loop and the trigonometric function pattern of the square loop. In the
above discussion, uniform in-phase currents are assumed.

—/0
B
X
Fia. 6-14. Large square loop. Fia. 6-15. Pattern of square loop with

uniform, in-phase current. The loop is
4.44 wavelengths on a side. The pattern
is in a plane normal to the plane of the
loop and through the line AA’ of Fig. 6-14.

PROBLEMS

6-1. Calculate and plot the far-field pattern normal to the plane of a circular loop
2 wavelength in diameter with a uniform in-phase current distribution.

6-2. Calculate and plot the far-field pattern in a plane normal to the plane of 8
square loop and parallel to one side. The loop is 1 wavelength on a side. Assume
uniform in-phase currents.

6-3. What is the maximum effective aperture of a thin loop antenna 0.1 wave-
length in diameter with a uniform in-phase current distribution?

6-4. What is the radiation resistance of the loop of Prob. 6-1?

6-5. A circular loop antenna with uniform in-phase current has a diameter D.
What is

a. The far-field pattern (calculate and plot)
b. The radiation resistance
c. The directivity

for each of three cases where

(1) D=2x/4
(2) D= 15\
(3) D=8\

6-6. Resolving the small square loop with uniform current into 4 short dipoles,
show that the far-field pattern in the vlane of the loop is a circle.
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CHAPTER 7

THE HELICAL ANTENNA

7-1. Introduction. The helical antenna, which is discussed in this chap-
ter, may be regarded as the connecting link between the linear antenna
and the loop antenna, discussed in preceding chapters. The helical
antenna is the general form of antenna of which the linear and loop an-
tennas are special cases. Thus, a helix of fixed diameter collapses to a
loop as the spacing approaches zero. On the other hand, a helix of fixed
spacing between turns straightens out into a linear conductor as the diam-
eter approaches zero.

A helix may radiate in many modes. Two of these radiation modes will
be considered in some detail. These are: (1) the axial mode of radiation’
and (2) the normal mode of radiation.”

In the axial mode of radiation the field is a maximum in the direction
of the helix axis and is circularly polarized or nearly so. The axial mode
of radiation occurs when the helix circumference is of the order of 1 wave-
length. For a given helix, this mode of radiation persists over a relatively
wide frequency range.

In the normal mode of radiation, the field is a maximum in a direction
normal to the helix axis, and for a certain relation between the spacing
and diameter the field is, in theory, circularly polarized. For the normal
mode the dimensions of the helix must be small compared to the wave-
length, so that from band width and efficiency considerations this mode is
not readily applicable in practice.

1J, D. Kraus, Helical Beam Antenna, Electronics, 20, 109-111, April, 1947,

J. D. Kraus and J. C. Williamson, Characteristics of Helical Antennas Radiating ig
the Axial Mode, J. Applied Phys., 19, 87-96, January, 1948.

0. J. Glasser and J. D. Kraus, Measured Impedances of Helical Beam Antennas,
J. Applied Phys., 19, 193-197, February, 1948.

J. D. Kraus, Helical Beam Antennas for Wide-band Applications, Proc. I.R.E., 36,
1236-1242, October, 1948,

J. D. Kraus, The Helical Antenna, Proc. I.R.E., 37, 263-272, March, 1949,

J. D. Kraus, Helical Beam Antenna Design Techniques, Communications, 29, 6-9,
34-35, September, 1949,

T. E. Tice and J. D. Kraus, The Influence of Conductor Size on the Properties of
Helical Beam Antennas, Proc. I.R.E., 37, 1296, November, 1949.

2H. A. Wheeler, A Helical Antenna for Cireular Polarization, Preoc. I.R.E., 35, 1484~
1488, December, 1947.

173

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



174 ANTENNAS [CHap, 7

The axial and normal radiation mode patterns of a helix are eompared
with the radiation patterns for straight conductors and loops in Fig. 7-1.

STRAIGHT CONDUCTORS (x=90°)

Short Long
OC i “ %
I[=1 =1 I=1
I:=0 I.=0 [2=
V=C v=QQ [o
All 3'A long
LOOPS (x=0°)
Small Large
C=A C=12A
Ii=1, Iz=1 I,=1 [2=0
v=C v=0
HELICES (0°¢a ¢ 20°)
Small Large
g
S
=

F1e. 7-1. Patterns of straight conductor, loop, and helix compared. I. and I, repre-
sent current magnitudes of waves traveling in opposite directions on antennas. If
I, = I there is a pure standing wave. If I, = 0, only a pure traveling wave is present.
(v = velocity of wave along antenna, ¢ = velocity of light, ¢ = circumference).

It is to be noted that the patterns of a short linear conductor, a small
loop, and a small helix are the same.

7-2. Helix Dimensions. The following symbols will be used to deseribe
a helix (see Fig. 7-2):

= diameter of helix (center to center)

= circumference of helix = #D

= spacing between turns (center to center)
pitch angle = arctan S/xD

R ln QY
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L = length of 1 turn

n = number of turns

4 = axial length = nS

d = diameter of helix conductor

The diameter D and circumference C refer to the imaginary cylinder
whose surface passes through the center line of the helix conductor. A
subscript A\ signifies that the dimension is measured in free-space wave-
lengths. For example: D, is the helix diameter in free-space wavelengths.

Surface of imaginary . S
/helix cylinder

C=7wD L

Fra. 7-2. Helix and associated dimen- Fig. 7-3. Relation between circumfer-

sions. ence, spacing, turn length, and pitch angle
of a helix,

Tf 1 turn of a circular helix is unrolled on a flat plane, the relation be-
tween the spacing S, circumference C, turn length L, and pitch angle «,
are as illustrated by the triangle in Fig. 7-3.

The dimensions of a helix are conveniently represented by a diameter-
spacing chart or, as in Fig. 7-4, by a circumference-spacing chart. On
this chart the dimensions of a helix may be expressed either in rectangular
coordinates by the spacing S, and circumference €, or in polar coordinates
by the length of 1 turn L, and the pitch angle . When the spacing is
zero, « = 0, and the helix becomes a loop. On the other hand, when the
diameter is zero, « = 90° and the helix becomes a linear conductor.
Thus, in Fig. 7-4 the ordinate axis represents loops while the abscissa
axis represents linear conductors. The entire area between the two axes
represents the general case of the helix.

Suppose that we have a 1-turn helix with a turn length of 1 wavelength
(Ly = 1j. When @ = 0, the helix is a loop of 1 wavelength circumference
or of diameter equal to 1/7 wavelengths. As the pitch angle « increases,
the circumference decreases and the dimensions of the helix move along
the Ly = 1 curve in Fig. 74, until, when « = 90°, the “helix” is a straight
conductor 1 wavelength long.

T-3. Radiation and Transmission Modes of Helices. In discussing the

helix, it is necessary to distinguish between transmission and radiation
ingdes.
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The term “transmission mode” is used to describe the manner in which
an electromagnetic wave is propagated along an infinite helix as though

Pitch Angle,
° o
30
2. 8[ |
Axis of l
26 %Loops Ca=2-/S41
24

2.2

45°

)
o

P
1

>

60°

o N

®

o))

Circumference in Wavelengths, Ca

D

Axis of Linear
lConductors o

0 2 4 6 8 1012 14 16 |820o
Spacing in Wavelengths, S

3%
23
oD
\ o

F1c. 7-4. Spacing-circumference chart for helices showing regions for different modes
of operation.

+ = p the helix constituted an infinite trans-
(a) Q_QQ_QQQ.Q.QQQQQ/ Tc  mission line or wave guide. A variety
of different transmission modes is
+ + + + possible.

(d) - T The term “radiation mode” is used
T to describe the general form of the far-
+ T + T, t T field pattern of a finite helix. Although
(¢) O _O- +O+ an infinite variety of patterns is pos-
— e = sible, two kinds are of particular in-
End view of helices terest. One is the axial or beam mode
fre. 7-5. Approximate instantaneous Of radiation (B, mode), and the other
charge distributions on helices for differ~- is the normal mode of radiation (R,

ent transmission modes. mode).
The lowest transmission mode for a
helical conductor has adjacent regions of positive and negative charge
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separated by many turns. This mode is designated as the T, transmission
mode and the instantaneous charge distribution is as suggested by ¥ig. 7-5a.
The T, mode is important when the length of 1 turn is small compared to the
wavelength (L << \) and is the mode oceurring on low-frequency inductances.
Tt is also the important transmission mode in the traveling-wave tube * Since
the adjacent regions of positive and negative charge

are separated by an appreciable axial distance, a Polar
substantial axial component of the electric field is s
present, and in the traveling-wave tube this field
interacts with the electron stream. If the criterion
Ly < % is arbitrarily selected as a boundary for the
T', transmission mode, the region of the helix dimen-
sions for which this mode is important is shown by
the shaded area in Fig. 7-4.

A helix excited in the T, transmission mode may
radiate. Let us consider the case when the helix
is very short (nL << \) and the current is assumed
to be of uniform magnitude and in phase along the
entire helix. It is theoretically possible to approxi-
mate this condition on a small, end-loaded helix.
Although the radiation resistance of such a small :
helix would be very low, let us assume that appre- wyg. 7-6. A small he-
ciable radiation can be obtained. The maximum lix and its radiation
field from the helix is then normal to the helix axis Pattern.
for all helix dimensions provided only that nL < A.

Thus, this condition is called a “normal radiation mode” (R,).> Any com-
ponent of the field has a sine variation with 6 as shown in Fig. 7-6. The
space pattern is a figure of revolution of the pattern shown, around the
polar axis. The field is, in general, elliptically polarized but for certain helix
dimensions may be circularly polarized and for other dimensions, linearly
polarized. The transmission mode and radiation mode appropriate for
very small helices can be described by combining the T, and E, designa-

1 R. Komfner, The Traveling Wave Tube as Amplifier at Microwaves, Proc. I.R.E.,
35, No. 2, 124-127, February, 1947.

J. R. Pierce and L. M. Field, Traveling Wave Tubes, Proc. I.R.E., 36, No. 2, 108-111,
February, 1947.

J. R. Pierce, Theory of the Beam-type Traveling Wave Tube, Proc. I.R.E., 85,
No. 2, 111-123, February, 1947.

C. C. Cutler, Experimental Determination of Helical Wave Properties, Proc. I.R.E.,
36, No. 2, 230-233, February, 1948,

L. J. Chu and J. D. Jackson, Field Theory of Traveling Wave Tubes, Proc. I.R.E.,
36, No. 7, 853-863, July, 1948.

2 Any vadiation mode, in general, may be arbitrarily designated by the shorthand
potation R,, 5., where 8, is the angle from the helix axis to the direction of maximum
radiation. For the normal mode 6» = 90° so that the designation is Fq.
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tions as T,R,. This designation is applied in Fig. 74 to the region of
helix dimensions near the origin.

A first-order transmission mode on the helix, designated T, becomes
permissible when the helix circumference C\ in free-space wavelengths is
of the order of 1 wavelength. For smail pitch angles, this mode has
regions of adjacent positive and negative charge separated by approxi-
mately % turn or near the opposite ends of a diameter as shown in Fig.
7-5b and also in end view by Fig. 7-5¢. It is found that radiation from
helices with circumferences of the order of 1 wavelength (C, ~ 1) and a
number of turns (n > 1) is usually a well-defined beam with a maximum
in the direction of the helix axis. Hence, this type of operation is called
the “axial or beam mode of radiation” and since 6,, = O the designation
is B,. A helix radiating in the axial mode may be spoken of as a ‘helical

beam antenna.” The field in the
axial direction from a helix radiating
in the axial mode is circularly

polarized or nearly so.
“Eg Measured field patterns of a 7-
turn 12° helix with a circumference

of 1 wavelength are shown in Fig.

162 ¢ 7-7. There are two patterns. Re-

P ferring to the helix in Fig. 7-7, the
0.94) =

E, pattern shows the variation with
a=12°,n=7, Cr=1.0
¢ of the E, component (parallel to
the page) of the field. The E, pat-
tern shows the variation with ¢ of
the E, component (normal to the
page). Both patterns are functions

A of ¢ and are measured in the plane
¢ of the page. Both patterns in Fig.
7-7 are adjusted to the same maxi-

Fra. 7-7. Field patterns. of 12°) 7-turn  mum. Ho\vever, the actual differ-
helix radiating in the axial mode. The ence between the maxima of E, and

helix circumference is { wavelength, . . .
Both E; and E, patterns are shown as a Ey is small, since the field is nearly

function of ¢. E, is in the plane of the circularly polarized.
page, and E, is normal to the page. The axial mode of radiation with

patterns similar to those of Fig. 7-7
occurs over a considerable range of helix dimensions (C\ and S, or Ly and «),
as shown by the crosshatched area in Fig. 7-4. Being associated with the
T, transmission mode, the combined designation appropriate to this region
of helix dimensions is T, R, as shown in Fig. 7-4.

Still higher order transmission modes, T,, T, and so forth, become
permissible for larger values of C,. For small pitch angles, the approximate
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charge distribution around the helix for these modes is as suggested by
Fig. 7-5c.

In Fig. 7-4, the normal radiation
mode region (T\R,) is shown as a
shaded area. The axial or beam mode
region (T.R,) is shown as a cross-
hatched area. In general, the radia-
tion mode associated with helix di-
mensions outside these areas is multi-
lobed or, in some cases, conical, as
illustrated by the patterns in Fig. 7-8.
Another example is the four-lobed
mode' that oceurs when the spacing is
1 wavelength and the length of one a=24% n=3.Cael 25

3 _ o
turI-1 1,S 2 Wz.welengths (e = 30°, t“,he F1c.7-8. Examples of multilobed and
radiation being both normal and axial.  ¢onical patterns.

See Fig. 7-9.
7-4. The Normal Radiation Mode. Consider a helix oriented with its
axis coincident with the polar or z axis as in Fig. 7-10a. If the dimen-

Q\Radonm

patterns

Ep

a=12°1n=8,C\=15

3

) 7

— x

g_‘;@.zsx ﬁ 5 ?{_05
{

¥
= 0.1\

0.32A
Normal mode
i !<- 551
Axial mode p
4-iobed mode

Fig. 7-9. Patterns for three helix radiation modes, the relative size of helices to pro-
duce the different modes at the same wavelength being indicated.

1 H. Chireix, U.S. Patent 1,843,445, Feb. 2, 1932.
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sions of the helix are small (nL <)), the maximum radiation is always in
a direction normal to the helix axis (see pattern in Fig. 7-6). Hence, the

Zz

Y'

X (a): Helix : X (¢): Dipole

F16. 7-10(a), (b), and (c). Dimensions and coordinates for helix, loop, and dipole.

maximum field of a small helix oriented as in Fig. 7-10a is in the z-y plane,
with zero field in the direction of the z axis.

When the pitch angle is zero, the helix becomes a loop as in Fig. 7-10b.

D When the pitch angle is 90°, the helix

l‘—’l straightens out into a linear antenna

as in Fig. 7-10c, the loop and straight

e
:[S antenna being limiting cases of the
Is d helix.

The far field of the helix may be
deseribed by two components of the
electric field, E, and E,, as shown in
Fig. 7-10a. Let us now develop
expressions for the far-field patterns

(d) ] (e) ) of these components for a small helix.
Fia. 7-10(d) and (¢). Modified helix for  rpy, development is facilitated by
normal mode calculations. . . .
assuming that the helix consists of a
number of small loops and short dipoles connected in series as in Fig. 7-10d.
The diameter D of the loops is the same as the helix diameter, and the
length of the dipoles S is the same as the spacing between turns of the
helix. Provided that the helix is small, the modified form of Fig. 7-10d
is equivalent to the true helix of Fig. 7-10a. The current is assumed to
be uniform in magnitude and in phase over the entire length of the helix.
Since the helix is small, the far-field pattern is independent of the number
of turns. Hence, it suffices to calculate the far-field patterns of a single
small loop and one short dipole as illustrated in Fig. 7-10e.
The far field of the small loop has only an E, component. Its value is
given in Table 6-1, as
_ 1202°[I]sin 6 A

E, r I

(7-1)
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where the area of the loop A = =D*/4
The far field of the short dipole has only an E,; component. Its value is
given in the same table as

(7-2)

where S has been substituted for L as the length of the dipole.

Comparing (7-1) and (7-2), the j operator in (7-2) and its absence in
(7-1) indicates that £, and E, are in phase quadrature. The ratio of the
magnitudes o1 (7-1) and (7-2) then gives the axial ratio of the polarization
ellipse of the far field. Hence, dividing the magnitude of (7-2) by (7-1)
we obtain for the axial ratio AR,

Bl _ S\ _ 2
AR = J\ﬁ T 2rA T »'D? (7-3)
Three special cases of the polarization ellipse are of interest. (1) When
E, = 0, the axial ratio is infinite and the polarization ellipse is a vertical
line indicating linear vertical polarization. The helix in this case i3 a
vertical dipole. (2) When E, = 0, the axial ratio is zero' and the polari-
zation ellipse is a horizontal line indicating linear horizontal polarization.
The helix in this case is a horizontal loop. (8) The third special case of
interest occurs when | By | = | E,|. For this case the axial ratio is unity,
and the polarization ellipse is a circle, indicating circular polarization.
Thus, setting (7-3) equal to unity yields

7D = /28"  or G, = /28, (7-4)

This relation was first obtained by Wheeler in an equivalent form.*> The
radiation is circularly polarized, not only in all directions in the z-y plane
of Fig. 7-10a but in all directions in space except in the direction of the
polar axis where the field is zero.

We have considered three special cases of the polarization ellipse in-
volving linear and circular polarization. In the general case, the radiation
is elliptically polarized. Therefore, the radiation from a helix of constant
turn length changes progressively through the following forms as the pitch
angle is varied. When o = 0, we have a loop (Fig. 7-10b) and the polariza-
tion is linear and horizontal. As « increases, let us consider the helix
dimensions as we move along a constant L, line in Fig. 7-4. As « increases

!The axial ratio is here allowed to range from O to infinity, instead of from 1 to
infinity as customarily (Sec. 15-11), in order to distinguish between linear vertical and
linear horizontal polarization.

*H. A. Wheelcr, A Helical Antenng for Circular Polarization, Proc. I.R.E., 35, 1484~
1188, December, 1947,
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from zero, the polarization becomes elliptical with the major axis of the
polarization ellipse horizontal. When « reaches a value such that
Cy = /28, the polarization is circular. With the aid of Fig. 7-3, this
value of « is given by

-1+ i+ I
In

o = arcsin (7-5)
As a increases still further, the polarization again becomes elliptical but
with the major axis of the polarization ellipse vertical. Finally, when «
reaches 90°, we have a dipole (Fig. 7-10c) and the polarization is linear
and vertical. Wheeler’s relation for circular polarization from a helix
radiating in the normal mode as given by (74) or (7-5) is shown in Fig.
7-4 by the curve marked C, = 4/28,.

In the preceding discussion on the normal mode of radiation, the as-
sumption is made that the current is uniform in magnitude and in phase
over the entire length of the helix. This condition could be approximated
if the helix is very small (nL << X) and is end-loaded. However, the
band width of such a small helix would be very narrow, and the radiation
efficiency would be low. The band width and radiation efficiency could

Coaxial be increased by increasing the size of
Iine} IrGround plane the helix, but to approximate the uni-
=="00000" Max_ form, in-phase current distribution re-

quires that some type of phase shifter
be placed at intervals along the helix.

a)
Mox This may be inconvenient or imprac-
(m tical. Hence, the production of the
)

I (
b normal mode of radiation from a helix
( has serious practical limitations.

Max, m
I An antenna having four slanting

_m Max.  dipoles that is suggestive of a modi-
I fied helix radiating in the normal

(c) mode has been built by Brown and
Fig. 7-11. Arrangements for producing Woodward' (see Fig. 14-39f). Their
the axial mode of radiation. arrangement is based on a design de-

scribed by Lindenblad.?

7-6. Arrangements for Producing the Axial Mode of Radiation. When
the helix circumference C) is increased to the order of 1 wavelength, the
axial or beam mode of radiation is obtained. This radiation mode is
generated in practice with great ease. In fact, the dimensions of the

1 G, H. Brown and O. M. Woodward, Circularly Polarized Omnidirectional Antenna,
RCA Rev, 8, 259-269, June, 1947.

2 N. E. Lindenblad, Antennas and Transmission Lines at the Empire State Television
Station, Communications, 21, 10-14, 24-26, April, 1941.
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helix are so noncritical that a helical beam antenna is one of the simplest
types of antennas it is possible to make.

The arrangement illustrated in Fig. 7-11a affords a simple method of
generating the axial mode of radiation from a helix. The radiation is in
the form of a unidirectional beam as in Fig. 7-7.

The radiation is a maximum in the direction of the helix axis and is
circularly polarized, or nearly so. The helix is operated in conjunction
with a ground plane and is energized by a coaxial transmission line. The
inner conductor of the line connects to the helix, and the outer conductor
terminates in the ground plane. The ground plane should be at least §
wavelength in diameter. An axial mode helical antenna of 7 turns and
pitch angle of 12.5° is shown in the photograph of Fig. 7-12.

Fra. 7-12. Pole-mounted helical beam antenna (or axial mode helix) of 7 turns with
pitch angle of 12.5°,

An arrangement for energizing a helix in the beam mode with a two-
wire transmission line is shown in Fig. 7-116. The antenna in this case
produces a bidirectional pattern as indicated. The above helices are of
uniform cross section. The beam mode of radiation can also be generated
with a tapered helix as in Fig. 7-11c.

The diameter, the spacing, or both may be tapered (see Sec. 7-16). If
the taper is moderate, the effect is small, owing to the noncritical nature
of the helix dimensions when radiating in the axial mode.

The following discussion will be restricted to uniform helices.

7-6. Current Distribution on Helices. When the circumference of the
helix 15 less than about 2 wavelengths (Cy < 2) the current distribution is
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nearly sinusoidal as on a long straight antenna. As an example,' the
absolute magnitude of the measured current distribution on a i2°, 7-turn
helix with a circumference of about 0.6 wavelength (C, >~ 0.6) is presented

5,
x=12° n=7, C,=0.60Q Open end —>
- 4‘—
[ =
@
=
33
g
=2 R
o
< 5
|
(a)
1 ] | 1
) § : T 3 7
Distance along helix in wavelengths '
5
a=12°, n=7, C,=107 Open end —
- 4}
[ =
@
I
5
33
)
=
= 2
o
Q
o 1
2]
[ 1 { 1 {
[¢] ] 2 3 q 5 6 7
Distance along helix in wavelengths
I
- - e
§ Io -—E» § To ¥ Total outgoing wave
g —— E T 3
F " : —= :
% % \ T, 11/ 5 Totol reflected wave
@ ['4 e s '3
\ /
Feed Ristance Open  Feed Distance Open Feed Distance Open
end atong helix end end along helix end end atong helix end
(c) (d) (e)

Fie. 7-13. (a) Measured current distribution on helix of 0.6 wavelength circumference.

(b) Measured current distribution on same helix at higher frequency (C) = 1.07) with
radiation in the axial mode.

(c) Resolution of current distribution when €\ < % into two T, transmission mode
waves of nearly constant amplitude I, traveling in opposite directions.

(d) Resolution of current distribution on helix radiating in the axial mode (2 < Gy
< %) into two outgoing waves and two reflected waves.

(e) Resolution of eurrent distribution on helix radiating in the axial mode into a
total outgoing and a total reflected wave.

in Fig. 7-13a. When the frequency is raised so that the circumference of
this helix is about one wavelength (Cy >~ 1), the measured current is of

1 Kraus and Williamson, loc. cit.
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distinctly different form as shown in Fig. 7-13b. This type of distribution
is characteristic of helices radiating in the axial mode.

Thus, a helix with a circumference too small for the axial mode of
radiation (C, < %) has a nearly sinusoidal type of current distribution,
caused by alternate reinforcement and cancellation of two oppositely
directed traveling waves on the helix of nearly equal amplitude I, as
suggested in Fig. 7-13c. Both traveling waves are of the T, transmission-
mode type.

When the circumference of the helix is of the order of 1 wavelength and
radiation is in the axial mode (3 < €, < %), the current distribution is
relatively uniform over the central region of the helix since the outgoing
waves are large in comparison with those returning. By assuming two
outgoing traveling waves of different phase velocity, one (T mode) at-
tenuated and the other (T; mode) constant, and two smaller returning
traveling waves of different phase velocity, one (T, mode) attenuated and
the other (T, mode) constant, Marsh® has been able to account in detail
for the complex appearance of a measured current distribution such as in
Fig. 7-13b. The T, mode waves are rapidly attenuated while the T,
mode waves are of relatively constant amplitude as suggested in Fig. 7-13d,
so that in the central region of the helix only the relatively constant T,
mode waves are of importance. .-

Continuing the discussion of the current distribution on helices radiating
in the axial mode (3 < Cy < 4), the two outgoing waves may be combined
into a single total outgoing wave (T, + T, waves) and the two reflected
waves into a single total reflected wave as in Fig. 7-13e. The total out-
going wave attenuates rapidly near the input end but reaches a relatively
constant value about 1 wavelength from the input terminals (as measured
along the helical conductor). This value is maintained tc the open end
of the helix. A dip in the total outgoing wave occurs where the two
component outgoing waves (T, and T,) of different phase velocity are in
phase opposition and of nearly equal amplitude. The total reflected wave
starts back from the open end exhibiting a similar behavior. It decreases
rapidly at first but reaches a relatively constant value about 1 wavelength
along the helix from the open end. This amplitude is usually very much
less than that of the total outgoing wave,® so that the reflected wave

!James A. Marsh, Measurcd Current, Distributions on Helical Antennas, Proc. I R.E.,
39, 668-675, June 1951. '

? This may be deduced from Fig. 7-13b by noting that the SWR of current on the helix
approaches unity about 1 wavelength (or 1 turn in this case) from the open end. More
detailed data are given by Marsh. A few earlier measurements were made by Milton
Aronoff, “Measured Phase Velocity and Current Distribution Characteristics of Helica)
Antennas Radiating in the Beam Mode,” master’s thesis, Department of Electrical
Enginecring, The Ohio State University, 1948,
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can usually be neglected in calculating helix patterns. Furthermore, if
the helix is long, the outgoing 7, wave can also be neglected and the
pattern calculated entirely on the basis of a single outgoing 7', wave of
constant amplitude.

7-7. Terminal Impedance of Helices.'" When the helix circumference

- /k‘ reco e {asbl
5 N /
3
. \N +100! //2__\ \

e v
/

T
_&\
&

, s?)_
% S

iC= 1.0 A .
LN / C*'e“\ 150,12 /
—100 Oa70 100X NS L
Nk e N I A
-200, 66 | n:-8 -200 —— In=5
0106 200 300 400 "0 100 200 300 400
(a) (d)

Fra. 7-14. Measured impedance spiral for 12° 8-turn helix (a) and 18°, 5-turn helix
(5). The helices are of fixed physical size. The impedance (resistance R and reactance
X, in ohms) is shown as a function of frequency, the circumference in wavelengths at a
given frequency being indicated at intervals along the spirals.

is less than about % wavelength (C, < %), the terminal impedance is
highly sensitive to changes in frequency. However, when the helix cir-
cumference is of the order of 1 wavelength (3 < C, < 4) and the helix is
radiating in the axial mode, the terminal impedance is nearly constant as
a function of frequency, provided that the pitch angle and number of
turns are not too small. This is illustrated by the impedance spirals of
Fig. 7-14 which show the measured terminal impedance of 12° and 18°
helices as a function of the frequency, the helix circumference in wave-
lengths for a given frequency being indicated at intervals along the spirals.

When the circumference is too small for the axial mode of radiation,
the impedance variation is similar to that on a mismatched transmission
line of considerable length. On the other hand, the impedance variation,
or lack of it, when the helix radiates in the axial mode, is similar to that
on a transmission line terminated in approximately its characteristic
impedance. This relatively constant terminal impedance of a helix
radiating in the axial mode may be explained by the marked attenuation

10. J. Glasser and J. D. Krauus, Measured Impedances of Helical Beam Antennas,
J. Applied Phys., 19, 193-197, February, 1948.
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of both the total outgoing and total reflected waves. Thus, relatively little
energy reflected from the open end of the helix reaches the input. The
SWR of current at the input terminals

is given by .-Ground plane
Iy + I,
SWR = a%e ———
L= 1 _—_—-Z‘/: K 25K el
where I, and I, are as indicated in AVERIVERVERNVACE
Fig. 7-13e. Since I, is very small Surface of imaginary
compared to I, the SWR at the termi- helix cylinder

nals is nearly unity, like on a trans- ¥Fra. 7-15. Terminal arrangement of
mission line terminated in approxi- belical beam antenna.
mately its characteristic impedance.

The impedance spirals of Fig. 7-14 are measured on helices having the
terminal arrangement shown in Fig. 7-15. Beyond point @, the helix lies
in the surface of the imaginary helix cylinder. Between points P and @,
the helix conductor lies in a plane through the helix axis and at approxi-
mately the same pitch angle as for the helix proper. The helix axis co-
incides with the center conductor of the coaxial line feeding the antenna.
All terminal impedances are referred to the point P. Variations in the
arrangement of the conductor between P and @ produce changes in the
details of the impedance spirals. The nature of the dielectric structure
supporting the helix and the size and shape of the ground plane also have
an effect on the detail but not on the general form of the impedance
spirals, it being assumed that the amount of dielectric is not excessive and
that the size of the ground plane is not too small. The conductor diameter
d has relatively little effect on the helix characteristics when the helix is
radiating in the axial mode." However, at frequencies outside the axial
mode the effect of d may be considerable. In general, the terminal impe-
dance of helical antennas radiating in the axial mode is nearly a pure
resistance with a value between 100 and 200 ohms. Based on a large
number of impedance measurements, the terminal impedance of an axially
fed helix (as in Fig. 7-15) is given within about =420 per cent by the
empirical relation, R = 140 C, ohms. This applies to helices with
12° < @« < 15° 8 < Cy < 4,and n > 3.

7-8. Axial Mode Patterns and the Phase Velocity of Wave Propagation
on Helices.” As a first approximation, a helical antenna radiating in the
axial mode may be assumed to have a single traveling wave of uniform
amplitude along its conductor. By the principle of pattern multiplication,

1T. E. Tice and J. D. Kraus, The Influence of Conductor Size on the Properties of

Helical Beam Antennas, Proc. I.R.E., 87T, 1296, November, 1949.
*J. D. Kraus, The Helical Antenna, Proc. [.R.E., 3T, 263-272, March, 1949.
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the far-field pattern of a helix, such as shown in Fig. 7-15, is the product
of the pattern for 1 turn and the pattern for an array of n isotropic point
sources as in Fig. 7-16. The number n equals the number of turns.
The spacing S between sources is

To distont  €qual to the turn spacing. When the

point helix is long (say, nS, > 1), the

array pattern is much sharper than

beS> Helix the single-turn pattern and hence
1T Ty T T e Y Toxis largely determines the shape of the

Fig. 7-16. Array of isotropic point total f&f,r—ﬁeld pattern. Hence, the
sources, each source representing 1 turn approximate far-field pattern of a
of the helix. long helix is given by the array pat-
tern. Assuming now that the far-
field variation is given by the array pattern or factor and that the phase
difference between sources of the array is equal to the phase shift over 1
turn length L, for a single traveling wave, it is possible to obtain a simple,
approximate expression for the phase velocity required to produce axial
mode radiation. This value of phase velocity is then used in pattern
calculations.
The array pattern or array factor E for an array of = isotropic poini
sources arranged as in Fig. 7-16 is given by (4-51). Thus,

B = sin (ny/2)

" sin (9/2) 6
where » = number of sources and
v =S8 cos¢ + ¢ (7-7)
where S, = 2xS/A
In the present case, (7-7) becomes
Y = 21r<Sx cos ¢ — %) (7-8)

where p = v/c = relative phase velocity of wave propagation along the
helical conductor, » being the phase velocity along the helical conductor
and ¢ being the velocity of light in free space.

If the fields from all sources are in phase at a point on the helix axis
(¢ = 0), the radiation will be in the axial mode. For the fields to be in
phase (ordinary end-fire condition) requires that

¥ = —2rm (7-9)
wherem = 0,1,2,3 ...
The minus sign in (7-9) results from the fact that the phase of source 2 is

retarded by 2xL,/p with respect to source 1. Source 3 is similarly re-
tarded with respect to source 2, etc.
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Now putting ¢ = 0 and equating (7-8) and (7-9), we have

% =S8 +m (7-10)

‘When m = 1 and p = 1, we have the relation
L)‘_S)‘=1 or L—-—8S=2X (7‘11)

This is an approximate relation hetween the turn length and spacing re-
quired for a helix radiating in the axial mode. Since for a helix
L = #*D* 4+ §°, (7-11) can be rewritten as

D)\ — \/28) + 1

m

or COy= 28 +1 (7-12)

Equation (7-12) is shown graphically by the curve marked C, = /28 + 1
in Fig. 7-4. The curve defines approximately the upper limit of the axial
or beam mode region.

When m = 1, (7-10) is appropriate for a helix operating in the first-
order (T,) transmission mode. When m = 2, (7-10) is appropriate for
the T, transmission mode, etc. A curve for m = 2 is shown in Fig. 74
by the line marked C, = 2 4/S, + 1. Hence, m corresponds to the order
of the transmission mode on a helix radiating a maximum field in the axial
direction. The case of particular interest here is where m = 1.

The case where m = 0 does not represent a realizable condition, unless
p exceeds unity, since when m = 0 and p = 1 in (7-10) we have L = 8.
This is the condition for an end-fire array of isotropic sources excited by
a straight wire connecting them (@ = 90°). However, the field in the
axial direction of a straight wire is zero so that there can be no axial mode
of radiation in this case.

Returning now to a consideration of the case where m = 1 and solving
(7-10) for p, we have

__In
From the triangle of Fig. 7-3, (7-13) can also be expressed
= 1 7-13
P=ina+ ((cosa)/Cy) (7-134)

Equation (7-13a) gives the required variation in the relative phase velocity
p as a function of the circumference C, for in-phase fields in the axial
direction. The variation for helices of different pitch angles is illustrated
in Fig. 7-17. These curves indicate that when a helix is radiating in the
axial mode (3 < Cy < §) the value of p may be considerably less than
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unity. This is borne out by direct measurements of the phase velocity.
In fact, the observed phase velocity is found to be slightly less than called
for by (7-13) or (7-13a). Calculating the array pattern for a 7-turn helix
using values of p from (7-13) and (7-13a) yields patterns much broader
than observed. The p value of (7-13) or (7-13a) corresponds to the ordinary

14
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Fia. 7-17. Relative phase velocity p for different pitch angles « as a function of the
helix circumference in free-space wavelengths C) for the condition of in-phase fields in
tbe axial direction.

end-fire condition discussed in Chap. 4. If the increased directivity
condition of Hansen and Woodyard is presumed to exist, (7-9) becomes

¢ = —(27rm + %) (7-14)

Now equating (7-14) and (7-8), putting ¢ = 0, and solving for p we have
Ly

P S w4 (/) 719
For the case of interest m = 1 and
_ Ly
PR @t D20 (19

For large values of n, (7-16) reduces to (7-13). Equation (7-16) can also
be expressed’
1
P~ dina+ [(2n + 1)/2n]((cos «)/Cy]

1Tt is to be noted that, as n becomes large, (7-17) reduces to (7-13a).

(7-17)
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Using p as obtained from (7-16) or (7-17) to calculate the array factor

vields patterns in good agreement

with measured patterns. The p Z

value from (7-16) or (7-17) also is

in closer agreement with measured

values of the relative phase velocity.

Hence, it appears that the increased

directivity condition is approxi-

mated as a natural condition on

helices radiating in the axial mode."
Another method of finding the

relative phase velocity p on helical

antennas radiating in the axial

mode is by measuring the angle ¢,

at which the first minimum or null . r

occurs in the far-field pattern. This R v

corresponds to the first null in the % ;

array factor, which is at ¢, (see &

Fig. 4-20). Then in this case (7-9) X

becomes Fic. 7-18. Helix showing points ¢ and d

at eonductor surface.
¢ = —(2rm + ¢o) (7-18)

Now equating (7-18) and (7-8) and putting m = 1 and solving for p, we
have

p= Sy cos ¢o + 1 + (Po/2m)

Three relations for the relative phase velocity p have been discussed
for helices radiating in the axial mode with transmission in the 7'; mode.
These are given by (7-13a), (7-17), and (7-19).

A fourth relation for p appropriate to the 7 and higher order trans-
mission modes on infinite helices has been obtained by Bagby® by applying
boundary conditions approximating a helical conductor to a solution of
the general wave equation expressed in a new coordinate system, called
“helicoidal cylindrical coordinates.” Bagby’s solution is obtained by
applying boundary conditions to the two points ¢ and d in Fig. 7-18. His
value of the relative phase velocity is given by

(7-19)

! The axial mode region is shown by the crosshatched area in Fig. 7-4. Helices with
dimensions in this region radiate in the axial mode, and (7-13a), or more properly (7-17),
applies. Outgide this region these equations generally do not apply.

2 C. K. Bagby, “A Theoretical Investigation of Electro-magnetic Wave Propagation
on the Helical Beam Antenna,” master’s thesis, Department of Electrical Engineering

The Ohio State University, 1948,
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Cy

P = W cosa + hR sin a (7-20)
where
_ mdJ o (kR)
hR = tan « T (kB s R (7-21)
where m = order oi iransmission mode (=1,2,3...) (m % 0)
R = radius of helix cylinder
ER = /C; -- (LR’
h = constany

J is a Bessel function of argument kR

The variation of p as a function of C, for a 13° helix as calculated by
(7-20) and (7-21) for the case m = 1 is illustrated by the curve 4, in Fig.
7-19. A curve for the T, transmission mode (m = 1) as calculated for
the in-phase condition from (7-13a) is shown by B,. A curve for the in-
creased directivity condition on a 13°, 7-turn helix, with m = 1 is pre-
sented by C,.

Curves for the 7T, transmission mode for each of the three cases con-
sidered above are also presented in Fig. 7-19. In addition, a curve of
the measured relative phase velocity on a 13°, 7-turn helix is shown for
circumferences between about 0.4 and 1.5 wavelengths. It is to be noted
that in the circumference range where the helix is radiating in the axial
mode 3 < C, < %), the increased directivity curve, of the three calcu-
lated curves, lies closest to the measured curve.' The measured curve
gives the value of the total or resultant phase velocity owing to all modes
present (T,, T,, etc.) as averaged over the region of the helix between
the third and sixth turns from the feed end. The vertical lines indicate
the spread, if any, in values observed at one frequency. In general,
each transmission mode propagates with a different velocity so that when
waves of more than one transmission mode are present the resultant phase
velocity becomes a function of position along the helix and may vary
over a considerable range of values.” When 2 < C) < $ the phase velocity
as measured in the region between the third and sixth turns corresponds
closely to that of the T, transmission mode. The T, mode is also present
on the helix but is only important near the ends (see Fig. 7-13d). When
the circumference C, < %, the T, mode may be obtained almost alone

1The increased direetivity curve is the only curve calculated for a helix of 7 turns.
The in-phase field’s eurve and Bagby’s curve imply an infinite helix. The reason that
the in-phase field curve can be considered as referring to an infinite helix follows from the
fact that the increased directivity condition approaches the in-phase field condition as
the number of turns becomes infinite,

2J. A. Marsh, Measured Current Distributions on Helical Antennas, Proc. I.R.E.,
39, 668675, Junc 1951,
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over the entire helix (see Fig. 7-13¢) and the measured phase velocity

approaches that for a pure T, mode indicated by curve D in Fig. 7-19.
Theoretical values of the phase velocity for the 7', transmission mode

have been obtained by Pierce' and by Chu and Jackson® and a few meas-

12 -
\\ [ Axial mode of radiation _/ i A
L1k TD“‘D [ o // ’/
. . P
“~«.._Chu and Jackson Ay BV P G
=0T P |
1.0 S iicses - >
Velocity of light
09
08|
>o Measured . Increased
;L directivity
07+ - -
2/ -
/—//'0/2
06
Increased
05 ¢+ directivity
04}
03 i i | 1 ! 1 R ! I i i 1

03 04 05 06 07 08 09 10 11 12 13 14 15 16
Helix circumference =C,=27R/A

Fia. 7-19. Relative phase velocity p as a function of the helix circumference in free-
space wavelengths Cy for 13° helices. The solid curve is measured on a 13° 7-turn
helix. Curves 4; and 4, are as calculated by Bagby for 7'y and 7', transmission modes
on an infinite 13° helix. Curves B; and B. are calculated for in-phase fields and curves
€, and C, for increased directivity for 7'y and T'; transmission modes. Curve D is from
data by Chu and Jackson as calculated for T, transmission mode,

urements have been given by Cutler.® Curve D in Fig. 7-19 is for a 13°
helix and is based on data given by Chu and Jackson. This curve indi-
cates that at small circumferences the relative velocity of a pure T, mode
wave attains values considerably greater than that of light in free space.
At €y = %, curve D has decreased to a value of nearly unity, and if no
higher order transmission mode were permissible, the phase velocity would
approach that of light for large circumferences. However, higher order

1J. R. Pierce, Theory of the Beam-type Traveling Wave Tube, Proc. I.R.E., 35, No,
2, 111-123, February, 1947,

2 L. J. Chu and J. D. Jackson, Field Theory of Traveling Wave Tubes, Proc. I.R.E.,
36, No. 7, 853-863, July, 1948.

s C. C. Cutler, Experimental Determination of Helical Wave Properties, Proc. I.R.E.,
356, No. 2, 230-233, February, 1947,
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modes are permissible, and when C, exceeds about %, the resultant velocity
drops abruptly, as shown by the measured curve in Fig. 7-19. This change
corresponds to a transition from the T, to the 7T, transmission mode.
For a circumference in the transition region, such as 0.7 wavelength, both
T, and T, modes are of about equal importance.

When C, is about % or somewhat more, the measured phase velocity
approaches a value associated with the T, mode. As C, increases further,
the relative phase velocity increases in an approximately linear fashion,
agreeing most closely with the theoretical curve for the increased di-
rectivity condition (curve C;). When C) reaches about 4, a still higher
order transmission mode (7,) appears to become partially effective,
causing further dips in the measured curve. However, the radiation may
no longer be in the axial mode.

7-9. Table of Relative Phase Velocities. The formulas given in the
preceding section for helical antennas operating in the first-order trans-
mission mode (m = 1) are summarized in Table 7-1.

TABLE 7-1

RELATIVE PHASE VELOCITIES FOR
FIRST-ORDER TRANSMISSION MODE ON HELICAL ANTENNAS

Condition Relative phase velocity

In-phase fields* (ordinary end-fire) Ly _ 1

P= 8+ 1 sinea -+ [(cosa)/Cl

P TS+ [0+ D/2n]
Increased directivity .
= sina+ [(2n+ 1)/2n] [(cos a)/Cy]
From first null of measured field pattern p= Ly
Sy cos ¢y + (Yo/21) + 1
— C)‘
Helicoidal cylindrical coordinate P= s + hRsina

solution

where hR is as given by (7-21)

*It will be shown in Sec. 7-13 that this condition is also the one for circular polariza-
tion in the direction of the helix axis.

7-10. Axial Mode Array Factor Patterns and Effect of Number of Turns.
As mentioned in See. 7-8, the approximate far-field pattern of a helix
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radiating in the axial mode is given by the array factor for » isotropic
point sources, each source replacing a single turn of the helix (see Fig. 7-16).
The normalized array factor is

_ .= sin (ny/2)
E = sin on s (4/2) (7-22)
where ¢ = 2x(S, cos ¢ — L,/p)
The normalizing factor is sin (x/2n) instead of 1/n since the increased
directivity end-fire condition is assumed to exist (see Sec. 4-6a, Case 3).
For a given helix, S, and L, are known and p can be calculated from 7-16)
or (7-17). ¢ is then obtained as a function of . From (7-22), these values
of ¢ give the field pattern.
As an illustration, the calculated array factor patterns for a 7-turn 12°
helix with €, = 0.95 are shown in Fig. 7-20 for p values corresponding to

Measured
(average
of Eg
W p=0.76 and Eg)

(increased
rectivity
n condition)
9=0.20
p=0.802
(in-phase o =12°
fields n=7 p=0.725
condition) C,=0.95

Fic. 7-20.  Array factor patterns for 12°, 7-turn helix with ¢y = 0.95. Patterns are
shown for p = 1, 0.9, 0.802 (in-phase fields or ordinary end-fire coundition), 0.76 (in-
creased directivity), and 0.725. A measured curve is also presented. All patterns are
adjusted to the same maximum.

increased directivity and also in-phase fields and for p = 1, 0.9, and 0.725.
A measured curve (average of ¥, and E,) is shown for comparison. It
is apparent that the pattern calculated for the increased directivity condi-
tion (p = 0.76) agrees most closely with the measured pattern. The
measured pattern was taken on a helix mounted on a ground plane 0.88
wavelength in diameter. The calculated patterns neglect the effect of a
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ground plane. This effect is small if the back lobe is small compared to
the front lobe as it is for p = 0.802 and p = 0.76.

In general, an increase in the number of turns causes a decrease in
the beam width, as illustrated by the patterns in Fig. 7-21. This can be

Fig. 7-21. Models showing effect of number of turns on measured field patterns.
Helices have 12.2° pitch angle and 2, 4, 6, 8, 10 turns. Patterns shown are average
of measured Ey and E, patterns.

shown by ecalculating the array factor pattern for various values of n. In
effect this has been done in Fig. 4-26 in which a curve for the beam width
of end-fire arrays with increased directivity is presented as a function of
ndy. In Fig. 4-26, n is the number of sources and d, is the spacing. To
apply Fig. 4-26 to a helix, » is the number of turns and d, = S, = spacing
between turns in wavelengths. Thus, nd, in Fig. 4-26 is the axial length
of the helix in wavelengths (ndy = nS. = A4,). For long axial lengths,
the beam width between first nulls varies in inverse proportion to the
square root of the axial length. Thus, doubling the axial length of a helix
reduces the beam width to 1/+/2 = 0.707 of its original value.

Based on a large number of pattern measurements the beam width be-
tween half-power points and between first nulls is given by the following
guasi-empirical relations,

Beam width (half-power) = deg (7-23a)

52
Ch \/ 1Sy
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115
C)\ \/nS)\
These apply to helices with 12° < a < 15°, § < €, < 4,and n > 3.

'The half-power beam width as given by (7-23a) is shown graphicaliy in
Fig. 7-22. Dividing the square of (7-23a) into the number of square

Beam width (first nulls) = deg (7-23b)

10Q°
90°
80° g
S
60° \\\ \\\
NN
50° . \i\\\\\
® 40° N \\\‘ <
RO
; 30° \\ \\\\
§ Q\\\ .
3 BN Y
* 200 I~ b\%%?s ™
s N A
\ CM\
§/‘e \
15°
TN
10°
0708 1.0 1.5 2 3 4 5 6 7 8 10
Axial length {nS,) in free space wavelengths
L 1 1 1 1 1 1 1 ] 1 1 H 1 1 1 1] )
3 4 5 € 7 8 910 12 14 16 18 20 25 30 35 40 45

Number of turns (n) for C3=1.0 anda=12.5°

Fia. 7-22. Half-power beam width of axial mode helical antenna as a function of tho
axial length and circumference in free-space wavelengths and also as a function of the
number of turns for €, = 1.0 and « = 12.5°

degrees in a sphere gives the approximate expression for the directivity
D of an axial mode helix'

D = 15 Ci nS\ (7-24)

7-11. Axial Mode Single-turn Patterns. In this section expressions
will be developed for the far-field patterns from a single turn of a helix
radiating in the axial mode. It is assumed that the single turn has a

1Tt is assumed that the patterns of both field components are of the same shape and
are figures of revolution about the helix axis. The approximate directivity is then simply
nbtained as in (7-24) (see Appendix Sec. 20).

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



198 ANTENNAS [CHar. 7

uniform traveling wave along its entire length. The product of the single-
turn pattern and the array factor then gives the total helix pattern.
A circular helix may be treated approximately by assuming that it is

Helix
conductor

To point P

To point P

(a) (b)

Fra. 7-23. Square helix used in calculating single-turn pattern.

of square cross section. The total field from a single turn is then the
resultant of the fields of four short, linear antennas as shown in Fig. 7-23a.
A helix of square cross section can, of course, be treated exactly by this
method. Measurements indicate that the
difference between helices of circular and
square cross section is small.

Referring to Fig. 7-24, the far electric
field components, E,r and K7, in the z-z
plane will be calculated as a function of ¢
for a single-turn helix.

Let the area of the square helix be equal
to that of the circular helix so that

g = —1/5‘[2 (7-25a)

Fra. 7-24. Field components ) ]
with relation to single-turn helix. ~ where g 1s as shown in Fig. 7-23a.

The far magnetic field for a linear element
with a uniform traveling wave is given in Chap. 5 by (5-128). Multiplying
(5-128) by the intrinsic impedance Z of free space, putting vy = (37/2) +
a+ ¢, ¢t =0 and b = g/cos a, we obtain the expression for the ¢ com-
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ponent E¢; of the far field in the z-z plane due to element 1 of the square
helix as follows,

E, = k‘%‘llsm BA /(—7 - BA) (7-250)
where & = —Z—LZ
A=1—pcosy
B=-—20
2pc cos o

The expressions for E,,, E,s, ete., due to elements 2, 3, and 4 of the square
turn are obtained in a similar way (see Prob. 7-2a). Since the elements are
all dissimilar sources, the total ¢ component, E,r, from a single square turn
is obtained by adding the fields from the four elements at each angle ¢ for
which the total field is calculated (see Sec. 4-5). The sum of the fields from
the four elements is then,

sin wry
Eor = k=" sin BA /(—BA— c)

sin v’/ sin BA’’ sin « sin ¢
n ;
A’(1 — sin® « cos® ¢)}

/[—BA”—Iﬂ-{— (SCOS¢+gsm¢—rl>—|

dpc ' ¢

+ k

sin 'y

4 &k —7-sin BA’

g Lo S cos ¢ _ )—'
/[ BA 2pc+c( + gsino nJ

sin v/’ sin BA’ sin « sin ¢
A(1 — sin® & cos” ¢)}

g _3Lo | w(3Scosé )]
/ [ BA e T (—-r rn) | (7-26)

where v = %E +ato,v = g —a + ¢, 7" = arccos (sin o cos ¢)

A=1-pcosy, A’ =1—pecosy’, A" =1 — pcosy”
When a helix of circular cross section is being calculated L = xD/cos «
in (7-26) while for a helix of square cross section L = 4b.
If the contributions of elements 2 and 4 are neglected. which is a good

4+ k
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approximation when both @ and ¢ are small, the expression for Eyr i
considerably simplified. Making this approximation, letting ¥ = 1 and
r;, = constant, we obtain

sin v

E¢T - A

sin BA /(—BA)

sin v’

-+ 4 sm BA

/1=BA’ — 24/7B 4 (8, cos¢ + VxDsing)] (7-27)

Equation (7-27) applies specifically
@=0 -0 to helices of circular cross section,

#70,
s0 that B in (7-27) is
_ D \
B = 2p o8 o (7-28
Equation (7-27) gives the ap-

() proximate pattern of the ¢ com-
E

ponent of the far field in the z-z
. plane from a single-turn helix of
i Eor circular cross section.

=12} n=| In the case of the # component
Fre. 7-25. Caleulated single turn pat- of the far field in the z-z plane, only
terns for 12° helix. elements 2 and 4 of the square

turn contribute. Putting k = 1, the
magnitude of the approximate 8 pattern of the far field of a single-turr
helix of circular cross section can be shown to be

sin v'/ sin BA’’ cos o
A”"(1 — sin® a cos® ¢)}
- sin 3[n(Sy cos¢ — v/7Dysin¢) — 2/7B] (729

where B is as given by (7-28) and v’ and A’ are as in (7-26).

As an example, the E,r and E,r patterns for a single turn 12° helix with
C, = 1.07 have been calculated and are presented in Fig. 7-25. Although
the two patterns are of different form, both are broad in the axial direction
@ = 0).

The individual E, patterns of elements 1 and 3 of the single turn are
as suggested in Fig. 7-26. One lobe of each pattern is nearly in the axia:
direction, the tilt angle r being nearly equal to the pitch angle . The
individual patterns add to give the E,; pattern for the single turn as
shown (see also Fig. 7-25).

‘E9T|=2
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7-12. Complete Axial Mode Pattern. By the principle of pattern multi-
plication, the total far-field pattern of a helix radiating in the axial mode
is the product of the single-turn pattern and the array factor. Thus the
total ¢ component E, of the distant electric field of a helix of circular
cross seetion is the product of (7-27) and (7-22) or

E, = Eg E (7-30a)
The total § component E, is the product of (7-29) and (7-22) or
Eo = EQTE (7-30b)

As examples, the approximate E, and E, patterns, as calculated by
the above procedure, for a 12°, 7-turn uniform helix of circular cross sec-

tion with C, = 1.07 are presented

in Flg 7-27 at (a) and (C) With Q Total pattern
of one turn
Eor

reference to the helix shown at (e),

E, 1s in the plane of the page and

E; is normal to the page. The ar- ¢
ray factor is shown at (b). The
singie-turn patterns are as presented
in Fig. 7-25. The value of p used in
these calculations is approximately
that for the increased directivity
condition. The product of the
single-turn patterns (Fig. 7-25) and
the array factor pattern at (b) yields
the total patterns at (a) and (c).
The agreement with the measured
patterns shown at (d) and (f) is
satisfactory.

Comparing the patterns of Figs. Vs
7-25 and 7-27, it is to be noted that Frc. 7-26. Individual E, patterns of ele-
the array factor is much sharper ments 1 and 3 and total pattern of single
than the single turn patterns. Thus, turm, E4r. The single turn is shown in
the total E, and E, patterns (a) and plan view (in z-z plane of Fig. 7-23). The

. single turn and coordinate axes have been
(), Fig. 7-27, are nearly the same, rotated around the y axis so that the z-

in spite of the difference in the direction (¢ = 0) is toward the top of the
single-turn patterns. Furthermore, page.

the main lobes of the E, and E,

patterns are very similar to the array factor pattern. For long helices
(say, nSy > 1) it is, therefore, apparent that a calculation of only the
array factor suffices for an approximate pattern of any field component of
the helix. Ordinarily the single-turn pattern need not be calculated except
for short helices. However, to be able to neglect the single-turn pattern

Wave
direction
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on long helices, it is necessary that the direction of maximum radiation
from a single turn be approximately in the axial direction.

Arrgy -
factor
: E Colculoted
: Eu;cululed E,
\R/‘ Helix
Meosured °"| 2° Meosured
Ep om0 Ep

@) [

Fra. 7-27. Comparison of calculated and measured ﬁeld patterns for a 12° 7-turn
helix, 1.07 wavelengths in circumference, radiating in the axial mode.

——
il
2

The far-field patterns of a helix radiating in the axial mode can, thus,
be calculated to a good approximation from a knowledge of the dimensions
of the helix and the wavelength. The value of the relative phase velocity
used in the calculations may be computed for the increased directivity
condition from the helix dimensions and number of turns.

The effect of the ground plane on the axial mode patterns is small if
there are at least a few turns, since the returning wave on the helix and
also the back lobe of the outgoing wave are both small. Hence, the effect
of the ground plane may be neglected unless the helix is very short
(nSy < 3).

The approximate pattern of an axial mode helix can be calculated very
simply, while including the approximate effect of the single-turn pattern,
by assuming that the single-turn pattern is given by cos ¢. Then the
normalized total radiation pattern is expressed by

. sin (n;b/Z)
E = <sm p > < (111/2) 0s ¢ (7-31a)

where n = number of turns and
¥ = 360°[S\(I — cos¢) + (1/2n)] (7-31b)

The value of ¢ in (7-31b) is for the increased directivity condition and
is obtained by substituting (7-16) in (7-8) and simplifying. The first factor
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in (7-31a) is a normalizing factor, that is, makes the maximum value of
E unity.

7-13. Axial Ratio and Conditions for Circular Polarization from Helices
Radiating in the Axial Mode.! In this section the axial ratio in the direc-
tion of the helix axis will be deter-
mined, and also the conditions
necessary for circular polarization in
this direction will be analyzed.

Consider the helix shown in Fig,
7-28. Let us calculate the electric
field components E, and FE,; as
shown, at a large distance from the
helix in the z direction. The helix is
assumed to have a single uniform
traveling wave as indicated. The
relative phase velocity is p. The
diameter of the helix is D, and the
spacing between turns is S. Un-
rolling the helix in the z-z plane,
the relations are as shown in Fig. Fia. 7-28. Field components in the direc-
7-29. The helix as viewed from a tion of the helix axis.
point on the z axis is as indicated
in Fig. 7-30. The angle ¢ is measured from the z-z plane. The coordinates
of a point @ on the helix can be specified as r, £ 2. The point Q is at a
distance [ from the terminal point 7' as measured along the helix. From
the geometric relations of Figs. 7-29 and 7-30, we can write

h=1lsina;2z, —h =2, — lsina
€

S
@ = arctan 5 = arccos 7 (7-32)

ré = ] cosa
where z, is the distance from the origin to the distant point P on the z axis.

At the point P the ¢ component E, of the electric field for a helix of an
integral number of turns » is

27n
By=E, [ singel (802000 g (7-33)
v 0
where E, is a constant involving the current magnitude on the helix.

From (7-32) the last two terms of the exponent in (7-33) may be re-
written. Thus,

) ~ & (7-34)

P €08 a ¢

1For a general discussion of elliptical and circular polarization see Secs. 16-10 to 15-17.
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where
1
¢ = tana — 7 cosa (7-35)
When o = 0, the helix becomes a loop and ¢ = —1/p. The relation
rebe e sy y
YW)_ ; =
;b
Helix conductor- X
To Z,

Fia. 7-29. Geometrical relations for cal- Fia. 7-830. Helix of Fig. 7-28 as
eulating fields in z direction. viewed from the direction of the
positive z axis.

being obtained is, thus, a general one, applying not only to helices but
also to loops as a special case. Fquation (7-33) now reduces to

2%

E, = By /5 f sin £ o/*t dt (7-36)

0

where quantities independent of ¢ have been taken outside the integral
and where

w 2r
B=2=3
and
k= @rqg= Lx<sin a — %) (7-37)
On integration (7-36) becomes
E i2xp
B = g2 @ = 1) (738)

Whel‘e El = EO ei(“’"‘ﬁzv)
In a similar way we have for the § component E,; of the electric field
at the point P

22 1 sin a__l__)
c € pe,

2Tn .
By =B [ ocoste™ dat (7-39)

<0

Making the same substitutions as in (7-33), we obtain from (7-39)
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Bk
IR CEE)

The condition for circular polarization in the direction of the z axis is

i, GRS (740

E, .
7= 47 (7-41)
The ratio of (7-38) to (740) gives
E, 1 7
BT Tk (742)

Accordingly, for circular polarization in the axial direction of a helix of
an integral number of turns, £ must equal +1.

Equation (7-42) indicates that E, and E, are in time phase quadrature.
Therefore, the axial ratio AR is given by the magnitude of (7-42) or

7-43
=51 { 7-43)
The axial ratio will be restricted here to values between 1 and infinity.
Hence, if (7-43) is less than 1, its reciprocal is taken.

Substituting the value of k from (7-37) into (7-43) yields

1

AR = 17 Bina = ()]

(7-44)
or

: 1 )

AR = ) L)‘(Sln o — ;)) l (7-40)

Either (7-44) or (7-45) isused so that 1 £ AR < =.

From (7-44) and (7-45), it appears that the axial ratio can be caleulated
from the turn length L, and pitch angle @ of the helix, and the relative
phase velocity p. If we introduce the value of p for the condition of in-
phase fields (see Table 7-1), it is found that AR = 1. In other words,
the in-phase field condition is also the condition for circular polarization
in the axial direction.

This may also be shown by noting that (7-42) satisfies the condition

for cireular polarization when & = —1, or
Lx<sin o« — %) = —1 (7-46)
Solviug (7-40) for p, we obtain
L,
= 747
p S)‘ + 1 (‘-4 )
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. which is identical with the relation for in-phase fields (ordinary end-fire
condition).

Our previous discussion on phase velocity indicated that p followed
more closely the relation for increased directivity than the relation for in~
phase fields. Thus, introducing p in (7-45) for the condition of increased
directivity, we obtain

_2n+1

AR o

(7-48)
where 7 is the number of turns of the helix. If n is large the axial ratio
approaches unity and the polarization is nearly circular.

As an example, let us consider the axial ratio in the direction of the
helix axis for a 13° 7-turn helix. The axial ratio is unity if the relative
velocity for the condition of in-phase fields is used. By (7-48) the axial
ratio for the condition of increased directivity is 15/14 = 1.07. This
axial ratio is independent of the frequency or circumference C, as shown
by the dashed line in Fig. 7-31. In this figure, the axial ratio is presented
as a function of the helix circumference C) in free-space wavelengths.

30

2.5

g
Q.

o [ Axiol mode |
b= r of radiation |
o
% 15k
| -t 1 i TR
4 S5 6 7 8 9 0 u 12 L3 14 15

Helix circumference, Gy,

Fra. 7-31. Axial ratio as a function of helix circumference in free-space wavelengths
for a 13°, 7-turn helical beam antenna.

If the axial ratio is calculated from (7-44) or (7-45), using the measured
value of p shown in Fig. 7-19, an axial ratio variation is obtained as indi-
cated by the solid curve in Fig. 7-31. This type of axial ratio vs. cir-
cumference curve is typical of ones measured on helical beam antennas,
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Usually, however, the measured axial ratio increases more sharply as C,
decreases to values less than about § (see Fig. 7-34). This difference
results from the fact that the calculation of axial ratio by (7-44) or (7-45)
neglects the effect of the back wave on the helix. This is usually small
when the helix is radiating in the axial mode but at lower frequencies or
smaller circumferences (C, < 2) the back wave is important. The back
wave on the helix produces a wave reflected from the ground plane having
the opposite direction of field rotation to that produced by the outgoing
traveling wave on the helix. This causes the axial ratio to increase more
rapidly than indicated in Fig. 7-31. ‘

The foregoing discussion applies to helices of an integral number of
turns. Let us now consider a long helix where the number of turns may
assume nonintegral values. Hence, the length of the helical conductor
will be specified as £, instead of 2rn. It is further assumed that % is nearly
unity. Thus, (7-36) becomes

B )
E, = % fo o' **DE gt g (7-49)
Since k >~ —1,k 4+ 1 >~ 0, and it follows that
e PV~ G+ 1 (7-50)

Now integrating (7-49) and introducing the condition that k is nearly
equal to —1 and the approximation of (7-50), we have

3 & ) o DB 1]
E, = —5 [JE, - (7-51)

Similarly the # component E, of the electric field is
: & ] gl - b 1]
Ey =+ 2 []El + TE=1 (7-52)
When the helix is very long
E>1
and (7-51) and (7-52) reduce to

. E\&

Bo= %5 ad B = 42E

= (
Taking the ratio of E, to E,,

2= (7-54)

which fulfills the condition for circular polarization.
Still another condition resulting in circular polarization is obtained when
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(k = 1)¢, = 2rm, where m is an integer. This condition is satisfied when
either the positive or negative sign in k 4= 1 is chosen but not for both.

The important conditions for circular polarization are summarized as
follows:

1. The radiation in the axial direction from a helical antenna of any
pitch angle and of an integral number of 1 or more turns will be circularly
polarized if k = —1 (in-phase fields or ordinary end-fire condition).

2. The radiation in the axial direction from a helical antenna of any
pitch angle and a large number of turns, which are not necessarily an
integral number, is nearly circularly polarized if % is nearly —1.

7-14. Wide-band Characteristics of Helical Antennas Radiating in the
Axial Mode. The helical beam antenna has inherent broad-band proper-
ties, possessing desirable pattern, impedance, and polarization char-
acteristics over a relatively wide frequency range. The natural adjust-
ment of the phase velocity so that the fields from each turn add nearly
in phase in the axial direction accounts for the persistence of the axial
mode of radiation over a nearly 2 to 1 range in frequency. If the phase
velocity were constant as a function of frequency, the axial mode patterns
would be obtained only over a narrow frequency range. The terminal
impedance is relatively constant over the same frequency range because
of the large attenuation of the wave reflected from the open end of the
helix. The polarization is nearly circular over the same range in fre-
quency because the condition of fields in phase is also the condition for
circular polarization.

As shown in Fig. 7-32q, the dimensions of a helix in free-space wave-
lengths move along a constant pitch-angle line as a function of frequency.
If F, is the lower frequency limit of the axial mode of radiation and F,
the upper frequency limit of this mode, then the range in dimensions for
a 10° helix would be as suggested by the heavy line on the diameter-
spacing chart of Fig. 7-32a. The center frequency F, is arbitrarily defined
as Fy = (F1 + Fz)/2-

The properties of a helical beam antenna are a function of the pitch
angle. The angle resulting in a maximum frequency range F, — F, of
the axial mode of radiation is said to be an ‘“optimum’’ pitch angle. To
determine an optimum angle, the pattern, impedance, and polarization
characteristics of helical antennas may be compared on a diameter-spacing
chart as in Fig. 7-32b. The three contours indicate the region of satis-
factory pattern, impedance, and polarization values as determined by
measurements on helices of various pitch angle as a function of frequency.
The axial length of the helices tested is about 1.6 wavelengths at the
center frequency. The pattern contour in Fig. 7-32b indicates the ap-
proximate region of satisfactory patterns. A satisfactory pattern is con-
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sidered to be one with a major lobe in the axial direction and with relatively
small minor lobes. Inside the pattern contour, the patterns are of this
form and have half-power beam widths of less than 60° and as small as
30°. Inside the impedance contour in Fig. 7-32b the terminal impedance

o{=10°
F
Fo
~<
o
F
3
cé’ Constant pitch-angle line
2
o
Spacing, Sy (a)
J=5° X=10° x=14° -
A o=20
0.4 n,= 28+ "
AT T — = D L
—— - = F“"'- \‘
2 \
S / F \
! 0
o3 /KN | Y
L
& AN 5 L
- ~ - — ol -t' i .
S Pattern - Axial ratio
< o0.2f~ L L
g impedance
=} =40
.l
{ 1 \ y
[oX 0.2 03 04 05
Spacing, S, (v

Fre. 7-32. Diameter-spacing charts for helices with measured performance contours
for axial mode of radiation (b).

is relatively constant and is nearly a pure resistance of 100 to 150 ohms.
Inside the axial ratio contour, the axial ratio in the direction of the helix
axis is less than 1.25. Note that all contours lie below the line for which
D = /28, + 1/x. This line may be regarded as an upper limit for the
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beam mode. Tt is apparent that the frequency range F, — F, is small if
the pitch angle is either too small or too large. A pitch angle of about
12° or 14° would appear to be “optimum” for helices about 1.6 wave-
lengths long at the center frequency. Since the properties of the helix
change slowly in the vicinity of the optimum angle, there is nothing
critical about this value. The contours are arbitrary but are suitable for
a general-purpose beam antenna of moderate directivity. The exact values
of the frequency limits, F; and F,, also are arbitrary but are relatively
well defined by the close bunching of the contours near the frequency
limits.

Based on the above conclusions, a 14°, 6-turn helix was constructed and
its properties measured. The helix has a diameter of 0.31 wavelength at
the center frequency (400 Mc). The diameter of the conductor is about
0.02 . Conductor diameters of 0.006 X to 0.05 X can be used with little
difference in the properties of this helix in the frequency range of the
beam mode.

The measured patterns between 275 and 560 Mc are presented in Fig.
7-33. It is apparent that the patterns are satisfactory over a frequency
range from 300 Mc (Cy, = 0.73) to 500 Mc (C, = 1.22).

A summary of the characteristics of this antenna are given in Fig. 7-34
in which the half-power beam width, axial ratio, and standing-wave ratio
are shown as a function of the helix circumference. The half-power beam
width is taken between half-power points regardless of whether these
occur on the major lobe or on minor lobes. This definition is arbitrary
but is convenient to take into account a splitting up of the pattern into
many lobes of large amplitude. Beam widths of 180° or more are arbi-
trarily plotted as 180°. The axial ratio is the value measured in the
direction of the helix axis. The standing-wave ratio is the value measured
on a 53-ohm coaxial line. A transformer section § wavelength long at the
center frequency is located at the helix terminals to transform the terminal
resistance of approximately 130 to 53 ohms. Considered altogether, these
pattern, polarization, and impedance characteristics represent remarkably
good performance over a wide frequency range for a circularly polarized
beam antenna.

Although the difference in characteristics between helices of 12° to 14°
pitch angle is not large, the 14° type tends to have slightly better im-
pedance characteristics while the 12° type tends to have slightly better
patterns. The choice of a particular pitch angle as the optimum value is
arbitrary but may very appropriately lie in the range of 12° to 14°.!

t Design data for a 12.5° helix are given by J. D. Kraus, Helical Beam Antenna Design
Techniques, Communtcations, 29, September, 1949.
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Fic. 7-34. Summary of measured performance of 14°, 6-turn helix. The curves show
the half-power beam width for both field components, the axial ratio in the direction
of the helix axis, and the SWR on a 53-ohm line as a function of the circumference in
free-space wavelengths (C)).

7-16. Table of Pattern, Beam Width, Directivity, Terminal Resistance,
and Axial-ratio Formulas. Expressions developed in the preceding sections
for calculating the pattern, beam width, directivity, terminal resistance,
and axial ratio for axial mode helical antennas are summarized in Table
7-2. These relations apply specifically to helices for 12° < a < 15°
2 <Cy<4andn > 3.
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TABLE 7-2

FORMULAS FOR AXIAL MODE HELICAL ANTENNAS

Pattern

9_00) sin (/)

b= (sin n / sin (¢/2)

where ¢ = 3600[&(1 - cos @) + %;J

52
Beam width (half-power) . \/;E; deg
Beam width (first nulls) 115 deg
rst n 8 = =
cam W Ch \/n S
Directivity D = 15 Ci nS,

Terminal resistance

R = 140 C, ohms

) . 2n 1 . . .
Axial ratio AR = 2—; (increased directivity)

. . . 1 .
Axial ratio AR = Lx<sm a — ;) I (p unrestricted)
n = number of turns of helix L, = turn length in free-space wave-

Cy = circumference in free-space wave- lengths
lengths a = pitch angle
S\ = spacing between turns in free- p = relative phase velocity
space wavelengths ¢ = angle with respect to helix axis

7-16. Tapered and Other Forms of Axial Mode Helical Antennas. The
preceding sections have dealt with the uniform helix mounted on a flat
ground plane and fed from the ground-plane end. This type is illustrated
in Fig. 7-35a. Several other feed arrangements are also shown in Fig.
7-35. At (b) the ground plane is conical instead of flat. The types at
(¢) and (d) have a conductor coincident with the helix axis. The effect
of this conductor is not Jarge since the longitudinal field at the axis of the
helix is small. The balanced helix at (¢) produces opposite types of cir-
cular polarization from the two ends while that at (f) produces the same
type from both ends. The polarizationsindicated in the figure are according
to the IRE definition (see Sec. 15-12). Forms (g), (h), and (i) are other
modifications involving multiple helices of the same or different diameter.
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A wide variety of nonuniform or tapered helices are aiso possible.
These may be grouped into the following types: (1) a constant but S
and D variable, (2) D constant but « and S variable, and (3) S constant
but « and D variable. The taper may be of several kinds. For example,
it may be of the increasing, decreasing, or envelope type. These combi-
nations are suggested by the helices in Fig. 7-36. Several other kinds of
tapered helices are shown in Fig. 7-37. The one at (a) has both a tapered
and a uniform section. The helix at (b) involves still another kind of
taper, that of conductor size. In this case the conductor is a flat strip of
tapering width near the feed end and constant width at the open end.

Thin dielectric
sieeve

:—_—I‘——-fm mq;—;(ﬂ‘\ U LD

Left-circular
circular

(a) (e)
%fm Leﬁioor; ‘ ‘ l ‘ ‘ :ij:circulor

2] (N
Y _JQ@@

() (9)
AR =

(d) (hy ()

F1a. 7-35. Axial mode helices showing various constructional and feed arrangements,

III

tncreasing Decreasing Envelope

Frc. 7-836. Types of tapered axial mode helical antennas.
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At the open end this construction approaches that of a helical slot in a
conducting cylinder. A tapered strip conductor in combination with an
increasing D taper is shown at (c). Tapered conductors of circular cross
section can also be used as in (d) and (¢). The one at (d) is tapered in
both conductor and helix diameter while that at {¢) is tapered only in

NN
Thia;i:glectric .
' (4)

Siotted metal
cylinder

Ground

(e)

(c)

Fig. 7-37. Additional tapered types.

conductor diameter. Since the characteristics of an axial mode helix are
relatively insensitive to moderate changes in dimensions, the effect of
moderate departures of the above types from a uniform helix is, in general,
not large.

An interesting application of axial mode helices is to produce linear
polarization. Two helices, one wound left-handed and the other right-
handed but otherwise identical, are mounted as in Fig. 7-38a. The right-

Axis : ! Axis | Axis
I 1 :
! { !
' ! Right-handed
| ] helix
honded hanen
ande qal
helix helix Left—l']onded
helix
(a) (b)

Fra. 7-38. Helical antenna arrangements for producing linear polarization.
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and left-circular polarization combine on the axis to give linear polariza~
tion. If the resulting field is vertically polarized, then rotating one helix
180° on its axis turns the plane of polarization to horizontal. Another
method of obtaining linearly polarized radiation in the axial direction is
by connecting a left- and a right-handed helix in series as in Fig. 7-38b.

PROBLEMS

7-1. a. What is the approximate relation required between the diameter D and
height H of an antenna having the configuration shown, in order to ob-

tain a circularly polarized far field at all points at which the field is not
zero. 'The loop is circular and is horizontal, and the linear conductor
of length H is vertical. Assume D and H small compared to the wave-
length, and assume the current of uniform magnitude and in phase over
the system.

b. What is the pattern of the far circularly polarized field?

7-2. a. Prove that v = arccos (sin a cos ¢) in Eq. (7-26).

b. Confirm (7-29).

7-3. A helical beam antenna has & = 12°, n = 8, D = 22.5 cm.

a. What is the value of p at 400 Mc for (1) in-phase fields? (2) increased
directivity?

b. Calculate and plot the field patterns, assuming each turn is an isotropic
point source for p = 1, 0.9, and 0.5, and also for p equal to the value for
in-phase fields and for increased directivity.

c. Repeat (b), assuming each turn has a cosine field pattern.

7-4. A helix of uniform cross section consists of 6 turns. The diameter is 23.1
cm, and the turn spacing is 18.1 em. Neglect the effect of the ground plane. As-
sume a phase velocity along the helical conductor satisfying the increased directivity
condition. Calculate and plot the following patterns as a function of ¢ (0° to 360°)
in the # = 90° plane at 400 Mc. Use the square helix approximation.

a. Egr for a single turn and E; for the entire helix.

b. Repeat (a) neglecting the contribution of elements 2 and 4 of the
square turn.

¢. E,r for a single turn and E, for entire helix.
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CHAPTER 8

THE BICONICAL ANTENNA AND ITS IMPEDANCE

8-1. Introduction. In the preceding chapters it is assumed that the
antenna conductor is thin, in fact, infinitesimally thin. From known or
assumed current distributions, the far-field patterns are calculated. The
effect of the conductor thickness on the pattern is negligible provided
that the diameter of the conductor is a small fraction of a wavelength.
Thus, the patterns calculated on the basis of an infinitesimally thin con-
ductor are applicable to conductors of moderate thickness, say for
d < 0.05 \ where d is the conductor diameter,

The radiation resistance of thin linear conductors and loops is calculated
in Chaps. 5 and 6. This calculation is based on a knowledge of the pat-
tern and a known or assumed current distribution. The values so ob-
tained apply strictly to an infinitesimally thin conductor. The con-
ductor thickness, up to moderate diameters, has only a small effect on the
resistance at or near a current loop but may have a large effect on the
resistance at or near a current minimum.'

In this chapter, we shall consider the problem of finding the input
terminal resistance and also the reactance, taking into account the effect
of conductor thickness. This problem is most simply approached by
Schelkunoff’s treatment of the biconical antenna® which will be out-
lined in the following sections. Beginning with the infinite biconical
antenna, the analysis proceeds to terminated biconical antennas, that is,
ones of finite length. This method of treatment bears a striking similarity
to that usually employed with transmission lines in which the infirite
transmission line is discussed first, followed by the terminated line of
finite length.

8-2. The Characteristic Impedance of the Infinite Biconical Antenna.
The infinite biconical antenna is analogous to an infinite uniform transmis-
sion line. The biconical antenna acts as a guide for a spherical wave in the
same way that a uniform transmission line acts as a guide for a plane wave.
The two situations are compared in Fig. 8-1.

1 This is discussed in more detail in Chap. 9.
*S. A. Schelkunoff, “Electromagnetic Waves,” D. Van Nostrand Company, Ine,,
New York, 1943, Chap. 11, p. 441.
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The characteristic impedance of a biconical antenna will now be derived
and will be shown to be uniform. Let a generator be connected to the
terminals of an infinite biconical antenna as in Fig. 8-2. The generator
causes waves with spherical phase fronts to travel radially outward from the
terminals as suggested. The waves produce currents on the cones and a
voltage between them. Let V be the voltage between points on the upper
and lower cones a distance r from the terminals as in Fig. 8-2. Let I be

-
-
-

Spherical
Waove

Terminals

Plane
Wave (%)

{a)

II \\ / A
] \ ! \\
/ .

Fig. 8-1. An infinite biconical antenna Frs. 8-2. Infinite biconical antenna
(a) is analogous to an infinite uniform showing voltage V and current I at a dis-
transmission line (b). tance r from the terminals.

the total current on the surface of one of the cones at a distance r from
the terminals. As on an ordinary transmission line, the ratio V/I is
the characteristic impedance of the antenna. For the characteristic im-
pedance to be uniform, it is necessary that the ratio V/I be independent
of r.

Before V and I can be calculated, we must determine the nature of
the electric and magnetic fields existing in the space between the con-
ducting cones. Although the biconical transmission line can support an
infinite number of transmission modes, let us assume that only the TEM
or principal transmission mode is present. For the TEM mode, both
E and H are entirely transverse, that is, they have no radial component.
The E lines are along great circles passing through the polar axis as shown
in Fig. 8-3. This satisfies the boundary conditions since E is normal to
the surface of the cones. The H lines are circles lying in planes normal to
the polar axis.
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Maxwell’s equation from Faraday’s law for harmonically varying fields
is

V X E = —jopH (8-1)

The biconical antenna is most readily handled in spherical coordinates.

Fi1c. 8-3. E and H lines of outgoing TEM  Fig. 8-4. Biconical antenna with
wave on biconical antenna. relation to spherical coordinates
r, 0, ¢.

Let the spherical coordinates r, 8, ¢ be related to the antenna as in Fig
8-4. Expanding the left side of (8-1) in spherical coordinates, we have

O [a(r sin 0 B,) 6(7'E,,):|

T r’sin ¢ 98 ¢
42 [@ _ dlrsin g E»]
rsin # | 9¢ or
a, [ A0Es) _ 6E_J
T [ ar EY) 82

Since E has only a ¢ component, which by symmetry is independent of ¢,
only the fifth term of (8-2) does not vanish. Thus,

U % E = 2908 (8:3)

7 ar
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Expanding the right side of (8-1) in spherical coordinates,
—jopH = —jwp{a.H, + a,H, 4+ a,H,) (3-4)
Since H has only a ¢ component, (8-4) reduces to
—jopH = —a,jouH, 8-
Now equating (8-3) and (8-5) we have

o(rE .
OB ot (8-6)

N (=

This is Maxwell’s equation (8-1) reduced to a special form appropriate
to a spherical wave.

Maxwell’s equation from Ampére’s law for harmonically varying fields
in a nonconducting medium is

V X H = jweE (8-7)
H has only a ¢ component and E only a 6 component. Since E, = 0 it
follows that

a(smag H,) -0 (8-8)

Hence, (8-7) can be reduced by a similar procedure as used for (8-1) to

the form
o(rH )
—"(;r Q_ _ jee(rEy) (8-9)

Now differentiating (8-9) with respect to r and introducing (8-6), we
obtain a wave equation in (rH,). Thus,

2
Q(‘arg—“’) = —w’ue(rH,) (8-10)
The condition of (8-8) requires that H, vary inversely as the sine of 6.
That is,
H, « - (8-11)
$ " sin

Hence, a solution of (8-10) which also fulfills (8-11) is

— ! —~iBr
H, = o Hye (8-12)

where 8 = w\/;; = 2x/\
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This solution represents an outgoing traveling wave on the antenna.
Since the biconical antenna is assumed to be in-

Polar finitely long, only the outgoing wave need be con-
sidered.
6, The electric and magnetic fields of a TEM

wave are related by the intrinsic impedance Z,
of the medium. Thus, we have
E, = ZH, = L H,e (8-13)
7 sin 8

Equations (8-12) and (8-13) give the variation
of the magnetic and electric fields of a TEM out-
going wave in the space between the cones of a
biconical antenna as a function of 8 and r. The
fields are independent of ¢.

The voltage V(r) between points 1 and 2 on
the cones at a distance r from the terminals (see
Fig. 8-5) can now be obtained by taking the line
integral of F, along a great circle between the
two points. Thus,

r—0he
Fig. 8-5. Ejand H, field Vi) = f E,rde (8-14)
components at a distance One

r from the terminals of a
biccnical antenna.

where #6;, is the half angle of the cone. Sub-
stituting (8-13) in (8-14) we have

i e dp = cot (64./2)
— iBr Y ipr LUV \Yre/ 4] _
V@) = ZoHoe fo = B e (35)
or
V) = 22,H, ¢ In cot 2 (8-16)

The total current I(r) on the cone at a distance v from the terminals
can be obtained by applying Ampere’s law. Thus,

2r
10 = f H,rsin 6 do = 2urH, sin 6 17
[1]

Now substituting H, from (8-12) in (8-17) yields
I() = 2nH, " (8-18)
The characteristic impedance Z, of the biconical antenna is the ratio of

V(r) to I(r) as given by (8-16) and (8-18) or

= Y0 _ Z O ]
L= o5 = "2 oot (8-19)
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For a medium of free space between the cones, Z, = 120x so that (8-18)
becomes

Z, = 120 In cot "; ohms (8-20)

When 6,, is small (8., < 20°), eot (6,./2) =~ 2/6,. so that

Zk =120 In 62

ohms (8-21)
he

Equations (8-20) and (8-21) are Schelkunoff’s relations for the char-
acteristic impedance of a biconical antenna. Since these equations are
independent of r, the biconical antenna has a uniform characteristic
impedance.

8-3. Input Impedance of the Infinite Biconical Antenna. The input
impedance of a biconical antenna with TEM waves is given by the ratio
V(r)/I(r) as r approaches zero. For an infinite biconical antenna this
ratio is independent of r, so that the input impedance of the infinite bi-
conical antenna equals the characteristic impedance. The input im-
pedance depends only on the TEM wave and is unaffected by higher
order waves. Thus

Z s = Zg (8—22)
1200 i
) }
! )
1noo \ '9" '8,
y \\ : 1
™ | J
900}-¢ <
800 5 N Biconical ”
c \Qw‘"" Single cone
700} o ~] with
e \ Biconical ground plone
60012 N ontenna
8008~ S
o ~ - |Single cone with
400% ] \ground plane,
3002 B 2N
3 ~~4
200}-8 o
£ ~
100 © [~ < ‘\\
~— +. -
0 Sy
00° 002" 004 O1° 02° o0& T 4 10° 23" 40"  9od

Half-cone angle, &,

Frg. 8-6. Characteristic resistance of biconical antenna and of single cone with ground
plane as a function of the half-cone angle in degrees. If the antenna is infinitely long,
the terminal impedance is equal to the characteristic resistance as given in the figure
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where Z; is the input impedance of the biconical antenna and Z, is the
characteristic impedance as given by (8-20) or for small cone angles by
(8-21). The characteristic and input impedances are pure resistances so
that they may be referred to as the characteristic resistance R, and the
input resistance RB;. They are given by

R. = R; = 120 In cot "2“ ohms (8-23)

The variation of this resistance as a function of the half-cone angle
0. is presented by the solid curve in Fig. 8-6. An infinite biconical antenna
of 2° total cone angle (6,, = 1°) has a resistance of 568 ohms, while one
with a total cone angle of 100° (8,. = 50°) has a resistance of 91 ohms.
If the lower cone is replaced by a large ground plane (see insert in Fig. 8-6),
the resistance is one-half the value given by (8-23) as shown by the dashed
line in Fig. 8-6.

8-4. Input Impedance of the Finite Biconical Antenna. In this section
we will consider the finite biconical antenna. This is analogous to a finite
or terminated transmission line.

A TEM mode wave can exist along the biconical conductors, but in
the space beyond the cones transmission can be only in higher order
modes. Schelkunoff has defined the sphere coinciding with the ends of
the cones the boundary sphere as indicated in Fig. 8-7. The radius of the

Region of
higher order
modes Vs

Transition
region
Principal

mode region

 Infinite permeability

/7‘/ \\ Shell of magnetic

Energy ¥ material
reflected

—T>Energy
~—i, escapes
i i
) [ .
\ 7 Unity relative
Boundary \\ / parmeability
sphere \ /

Fre. 8-7. Schelkunoff’s finite biconical Fic. 8-8. Finite biconical antenna with
antenna and boundary sphere. boundary sphere replaced by a shell of
magnetic material,

sphere is I, being equal to the length of the cones (r = ). Inside this
sphere TEM waves can exist, and also higher order modes may be present,
but outside only the higher order modes can exist.

When an outgoing TEM reaches the boundary sphere, part of its energy
is reflected as a TEM wave. If the reflection at the sphere were uniform,
there would be only this reflected TEM wave. However, the reflection at
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224 ANTENNAS [CHaP. 8

the sphere ig not uniform, and some of the energy is reflected in higher order
waves while some energy continues into space as higher order waves. It
is as though the boundary sphere consists
of a shell of magnetic material which is
infinitely permeable near the cones and
has a relative permeability of unity at the
equator.’ At the cones most of the out-
going TIEM waves is reflected, but near
the equator most of the energy escapes, as
suggested in Fig. 8-8. Tt is but a step to
imagine that, from the impedance view-
point, the magnetic shell acts like a termi-
nating or load impedance Z; connected
across the open end of the cones as sug-
gested in Fig. 8-9a. Neglecting the effect
of the end caps of the cones, the finite bi-
conical antenna can now be treated as a
transmission line of characteristic im-
z Z, Zl pedance Z, terminated in the load im-
{b) — pedance Z; (see Tig. 8-9b). If the
F1c. 89. Finite or terminated bi- imp edance Zy, car} be founq, the im-
conical antenna and ecquivalent pedance Z; at the input terminals of the
transmission line. biconical antenna is calculable as the

impedance Z, reflected back over a line
of characteristic impedance Z, and length {. Thus (see Appendix Sec. 3),

-z Zy + jZ, tan Bl
" Z. + jZ tan gl

7 (8-24)

Thus, the problem resolves itself into one of finding Z;. Reduced to
simple terms, Schelkunoff’s method of finding Z, consists first of cal-
culating Z,, at a current maximum on a very thin biconical antenna, a
sinusoidal current distribution being assumed. In Fig. 8-10a a thin
biconical antenna of length [ is shown. Z,, is the impedance which appears
between the current maximum on one cone and the corresponding point on
the other cone. Since this impedance occurs § wavelength from the open end
of the antenna, Z, is then equal to Z,, transformed over a line 1 wavelength
long as in Fig. 8-10b. Finally, the input impedance Z; is Z transformed
over a line of characteristic impedance Z, and length [ as in Fig. 8-9b.

The impedance Z, is obtained from Z,, by the transmission-line relation
(see Appendix Sec. 3)

1 The shell is assumed to have zero electrical conductivity and a relative dielectris
constant of unity.
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Z, = 7, Z + ]:Z,( tan Sz
Zy + jZ, tan Bz

But the line is + wavelength long so
that Bz = 7/2 and (8-25) reduces to Thin biconical d
- antenno Z; Zm 7
S

7z = ]
Zy = = (8-26) Z
Tz, l-——l ! , -
Whereas Z, is entirely real, Z,, in (a)
(8-26) may have both real and z, L
imaginary parts. Thus, — °
i
Zpn=R,+ jXn : (5

. Fiec. 8-10. Thin finite biconical antenna
The real part R, is the same as the  and transmission line equivalent for find-

radiation resistance at a current ing Z;.
maximum of a very thin linear an-
tenna. It has been calculated by Schelkunoff as'

R, = 60 Cin 28! + 30(0.577 + In gl — 2 Ci 281 4 Ci 4BI) cos 28!
+ 30(S1 48] — 2 8i 28!) sin 28] ohms (8-27)

Provided only that the antenna is thin, the radiation resistance R, is
independent of the shape of the antenna (that is, whether cylindrical or
conical). However, the radiation reactance depends on the shape and has
been caleculated by Schelkunoff for a thin cone as

X, = 608128 + 30(Ci 48] — In 81 — 0.577) sin 281
— 30(814pB1) cos 2581 ohms (8-28)

Now substituting (8-26) for Z,, into (8-24), the input impedance is

Zi = Z, Z.. + 37, tan Bl (8-29)

where [ = length of one cone

Z, = value given by (8-21)

Z. = R, 4+ jX,, where R, = value given by (8-27) and X,, = value
given by (8-28).

The value of Z, becomes independent of cone angle for thin cones.
Thus, the real and imaginary parts of Z,,, as given by (8-27) and (8-28),
are independent of the cone angle, being functions only of the cone length
[. However, the characteristic impedance Z, is a function of the cone

1] equals half the total length of the antenna. In Chap. 5, L is twice this value being
equal to the total antenna length (that is, L = 2I).
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angle. Hence, the input impedance Z; as calculated by {8-29), is a function
of both the cone angle and the cone length. The limitation in calculating
Z.. that the cone angle be small also limits the use of (8-29) to small cone
angles, say, half-cone angles of less than about 3 degrees.’

The radiation impedance Z, at

300 - the current maximum of Schel-
kunoff’s biconical antenna as given

3 by (8-27) and (8-28) is presented in

200 o Fig. 8-11. The impedance is given
oh)r(ns // ' 4\9\ i as a function of cone length, I, in

roolA2-H N wavelengths, where I, = I/X. This

\ ‘ f ‘y impedance applies to small cone
! ”jo s angles.

05 5o 550 305300 Introducing Z,, into (8-29), the in-
R ohms put impedance can be obtained for
Fic. 8-11. Resistance R, and reactance cones of different characteristic
:X,,. of radiation impedanc.e Zn of a bicon- impedance. As illustrations, the in-
;Z?llgt?:l :sriil;v;Zn{;ufl:n(;t;on of the cone )¢ impedance of a biconical an-
e tenna of 1,000 ohms characteristic
impedance (half-cone angle, 8,, =
0.027°) and for one of 450 ohms characteristic impedance (half-cone angle,
0, = 2.7°) are given in Fig. 8-12,% as functions of the cone length in wave-
lengths (1,). If the lower cone is replaced by a large ground plane (see

insert in Fig. 8-6), the input impedance is halved.

It is significant that the terminal impedance of the thicker biconical
antenna (lower characteristic impedance) is more constant as a function
of cone length than the impedance of the thinner antenna. This difference
in impedance behavior of thick and thin antennas is typical not only of
conical antennas but also of antennas of other shapes, such as cylindrical
antennas. We, thus, conclude that the impedance characteristics of a
thick antenna are, in general, more suitable for wide-band applications than
those of a thin antenna.

The curve in Fig. 8-12 for the 2.7° half-angle biconical antenna spirals
inward and would eventually end at the point R = 450, X = 0, when the
length ! becomes infinite. Likewise, the curve for the 0.027° antenna
spirals into B = 1000, X = 0, when I, = «. The effect of the cone angle

1 Approximate solutions for wide cone angles are discussed by

C. T. Tai, Application of a Variational Principle to Biconical Antennas, J. Applied
Phys., 20, 1076-1084, November, 1949.

P. D. P. Smith, The Conical Dipole of Wide Angle, J. Applied Phys., 19, 11-23,
January, 1948,

2The curves in Figs. 8-11 and 8-12 are plotted from data given by Schelkunoff,
loc. cit.
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-l

is greatest near the second, fourth, or even, resonances (i, ~ %, 1, ete.)
and least near the first, third, or odd, resonances (, ~ %, %, ete.,

We note in Fig. 8-12 that the geometric mean resistance R, of the
resistance at the first and second resonances is about one-half the char-
acteristic resistance of the biconical antenna. We take R, = A/R.R,,
where R, is the resistance at the first resonance (I, =~ 1) and R, is the
resistance at the second resonance (I, =~ 1). Thus, for the antenna with
2.7° half-cone angle, R,, = 224 which is about half the characteristic re-
sistance (R, = 450). For the antenna with the 0.027° half-cone angle,
R,, = 500 or half the characteristic resistance (£, = 1,000). The geo-

+3000
o 4.
+2000 )%8 ~3] 7, 100p
?/ \\f:,,f 0,027"
/
+1000 (7 x
// ZK‘450 \\
\
X 3 _'a A GM'2.7°
onms 7 4 2000 memm 5000
\\ ohms I'
-1000 |- : :
3 \1\.6 =
N y /
-2000 ~ - 7
e - Pid 7
-3000

Fic. 8-12. Calculated input impedance of biconical antennas with 2.7° half-cone angle
(solid curve) and with 0.027° half-cone angle (dashed curve). The resistance R and
reactance X of the input impedance Z; are represented as a function of the length [ of
one cone in wavelengths, the length being indicated in 0.1-wavelength intervals.

metric mean resistance R,; of the resistance at the second and third reso-
nances is closer to the characteristic resistance. We take Ro; = /R,R;,
where R; is the resistance at the third resonance (I, =~ 2). Thus, for
the antenna with the 2.7° half-cone angle, R,; = 317 (R, = 450) while
for the antenna with the 0.027° half-cone angle, R,; = 710 (R, = 1000).
The geometric mean of successive higher resonant resistances would be
expected to approach closer yet to the characteristic resistance around
which the impedance spiral converges.

The impedance spirals in Fig. 8-12 are for a biconical antenna. If the
lower cone is replaced by a large ground plane, the impedance values are
halved. Measured impedances of single cones with ground plane are
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presented in Fig. 8-13 for cones with half-angles of 5°, 10°, 20°, and 30°
and characteristic resistances (B, = Z,) of 188, 146, 104, and 80 ohms,
respectively.’ The cones measured had a top hat consisting of an inverted
cone of 90° total included angle (see insert in Fig. 8-13). It is to be noted
that the trend toward reduced impedance variation with increasing cone
angle, as predicted by the calculated curves of Fig. 8-12, is continued for
the larger cone angles.

+150
U N
C
Z¢-188
+i00 i
W= 10
2,746
+50 —
hX 200
ohms '5/
-50
~100-
P
~150 :

Fia. 8-13. Measured input impedance of single cones with ground plane as a function
of cone length in wavelengths (). Impedance curves are presented for cones with
half-angles of 5°, 10°, 20°, and 30°.

8-5. Pattern of Biconical Antenna. The far-field pattern of a biconical
antenna will be nearly the same as for an infinitesimally thin linear antenna
provided that the cone angle is small. It is assumed that the current
distribution is sinusoidal. Thus, Egs. (5-80) and (5-81) can be used for thin
biconical antennas, the substitution being made that L = 2[, where [ is the
length of one cone.

8-6. Input Impedance of Antennas of Arbitrary Shape. Schelkunoff has
extended his analysis for thin biconical antennas, as outlined above, to

1The curves in Fig. 8-13 are plotted from data presented in Chap. 4 by A. Dorne, in

“Very High Frequency Techniques,” by Radio Research Laboratory Staff, McGraw-
Hill Book Company, Inc., New York, 1947.
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thin antennas of other shapes by considering the average characteristic

impedance of the antenna. Whereas the characteristic impedance of a

biconical antenna is uniform, the impedance of antennas of shape other

than conical is nonuniform. Thus, as an —

approximation the input impedance of I\ !

the cylindrical antenna in Fig. 8-14a

can be calculated as though it were a A

. . C e . \l Zlove)

biconical antenna of characteristic im- _l_yz_ 2 :ja

pedance equal to the average character- ' '

istic impedance of the cylindrical an-

tenna. The cylindrical antenna is | ®

replaced by the equivalent biconical an- l,’L\ @

tenn in Fig. 8-14a. L=

t:an:m?:sissri%fiegir:uitlgecfugj;en‘;r }tlg Fig. 8-14. - Cylindrical antenna and
’ equivalent biconical antenna ana

the antenna, is shown in Fig. 8-14b, it {ransmission line.

being assumed that the line of length I

has a uniform characteristic impedance equal to the average char-

acteristic impedance of the cylindrical antenna. This topic 1s discussed

further in Sec. 9-11.

PROBLEMS

8-1. Confirm Schelkunoff’s result that the characteristic impedance of an unsym-
metrical biconical antenna (with unequal cone angles) is

’ 144
Zy = 60 In (cot 02'" cot 0—2'"-)
where ¢}, = half the upper cone angle
#;; = half the lower cone angle
8-2. Prove that the characteristic impedance Z, for a single cone and ground
plane is half Z, for a biconical antenna.
8-3. Calculate the terminal impedance of a conical antenna of 2° totai angle
operating against a very large ground plane. The length ! of the cone is § wave-
wength.
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CHAPTER 9

THE CYLINDRICAL ANTENNA:
ITS CURRENT DISTRIBUTION AND IMPEDANCE

9-1. Introduction.’ In previous chapters, the assumption is made that
the current distribution on a finite antenna is sinusoidal. This assump-
tion is a good one provided that the antenna is very thin. In this chapter,
a method for calculating the current distribution of a cylindrical center-
fed antenna will be discussed, taking into account the thickness of the
antenna conductor.

This is a boundary-value problem. The antenna as a boundary-value
problem was treated many years ago by Abraham,” who obtained an exact
solution for a freely oscillating elongated ellipsoid of revolution. However,
the earliest treatments of the cylindrical center-driven antenna as a
boundary-value problem are those of Hallén® and L. V. King.* More
recently the problem has been discussed by Synge and Albert.® Hallén’s
method leads to an integral equation, approximate solutions of which
yield the current distribution. Knowing the current distribution and the
voltage applied at the input terminals, the input impedance is then
obtained as the ratio of the voltage to the current at the terminals.

Hallén’s integral-equation method will not be presented in detail, but the
important steps and results will be discussed in the following sections.

1In other chapters sufficient steps are given in most analyses that the reader should be
able to supply the intermediate ones without undue difficulty. However, this is not the
case in this chapter since in most instances a large number of steps is omitted between
those given in order to reduce the length of the development.,

2 M. Abraham, Die electrischen Schwingungen um einen stabformingen Leiter,
behandelt nach der Maxwellschen Theorie, Ann. Physik, 66, 435-472, 1898.

? Erik Hallén, Theoretical Investigations into the Transmitting and Receiving Quali-
ties of Antennae, Nova Acta Regiae Soc. Sei. Upsaliensis, Ser. IV, 11, No. 4, 1-44, 1938.

4 L. V. King, On the Radiation Field of a Perfectly Conducting Base-insulated Cylin-
drical Antenna Over a Perfectly Conducting Plane Earth, and the Caleulation of the
Radiation Resistance and Reactance, Phil. 1'rans. Roy. Soc. (London), 236, 381-422,
1937.

5 G. E. Albert and J. L. Synge, The General Problem of Antenna Radiation. I, Quart.
Applied Math., 6, 117-131, July, 1948.

J. L. Synge, The General Problem of Antenna Radiation and the Fundamental
Integral Equation, With Application to an Antenna of Revolution. II, Quart. Applied
Math., 6, 133-156, July, 1948.
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9-2. Outline of the Integral-equation Method. Since this method is a
long one, an outline of the important steps is given in this section.
The objective of the method is twofold:

1. To obtain the current distribution of a cylindrical center-fed antenna
in terms of its length and diameter
2. To obtain the input impedance

An outline of the procedure is given by the following steps. These are
treated more fully in the sections which follow.

1. The field E inside the conductor is expressed in terms of the current
and skin effect resistance.
2. The field E outside the conductor is expressed in terms of the vector
potential.
3. The tangential components of E are equated, obtaining a wave
equation in the vector potential A.
Steps 1 through 3 are discussed in Sec. 9-3.

4. The wave equation in A is solved as the sum of a complementary
function and a particular integral.

5. The constant C, in the solution is evaluated in terms of the condi-
tions at the input terminals.

6. The vector potential A is expressed in terms of the antenna cur-
rent I.

7. The value of C, from 5 and of A from 6 are inserted in the solution
4, obtaining Hallén’s integral equation. This is an integral equation
in the current 1.

Steps 4 through 7 are discussed in Sec. 9-4.

8. A partial solution for the current 7 is then obtained by evaluating
one of the integrals so that the current is expressed as the sum of
several terms, some of which also involve 1.

9. Neglecting certain terms in I, an approximate (zero order) solution
is obtained for I.

10. This value of I is substituted back in the current equation obtaining
a first-order approximation for the current. This process of itera-
tion can be continued, yielding second-order and higher order
solutions.

11. The constant C, is evaluated and an asymptotic expansion obtained
for the current. That is,

7 _iVr [sin B = |y ]+ (b./9) + (b/2) + ]
*6e0Q cos Bl + (d,/9Q) + (do/ Q%) + -+

where @ = 2 In (2/a), where [ is the half-length of the antenna and
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a the radius. The first-order approximation involves terms only as
high as 5,/Q and d,/Q. A second-order approximation involves
b,/Q° and d./Q?, etc.

Steps 8 through 11 are discussed in Sec. 9-5.

12. The input impedance is then obtained as the ratio of the input
terminal voltage Vr to the current at the input terminals Ir. This

is discussed in Sec. 9-9.
9-3. The Wave Equation in the Vector Potential A.' Consider the
center-fed cylindrical antenna of total length 2! and diameter 2a as shown
in Fig. 9-1. Let us first state the boundary conditions. Since the tan-

Iz
|
Z
End foce, | Ep
z=1 \ I =2
—
4 | 7,
L '
|
! !
|
1 P yipd,2) |
|
(
{ Es|||Ez
==
= . | B
! = Cylindrica!
P | surface of
| | onfennag
] |
l |
X L—-~—l 2
| !
—>| 20 |

Frg. 9-1. Symmetrical center-fed cy- Fic. 9-2. The tangential components of
lindrieal antenna with relation to coordi- the electric field at the surface of the an-
nates. tenna are equal.

gential components of the electric field are equal at a boundary,

E, =FE, (9-1)
along the cylindrical surface. In (9-1), E! is the field just inside the con-
ductor (p = @ — da), and £, is the field just outside the surface of the

1 The development in this section and in Sec. 9-4, leading up to Hallén’s integral equa-
tion, follows the presentation of Ronold King and C. W. Harrison, Jr., The Distribution
of Current Along a Symmetrical Center-Driven Antenna, Proc. ILR.E., 31, 518-567,
October, 1943.
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conductor (p = a + da) as indicated in Fig. 9-2. At the end faces of the
antenna we have

E, =E, (9-2)
where E) = the radial field just inside the face (z = I — dl)
E, = the radial field just outside (z = ! 4 dl) as suggested in

Fig. 9-2
To simplify the problem, it is assumed that ! is much larger than
a (I >> a) and that the radius is very small compared to the wavelength
{8a < 1). The effect of the end face can then be neglected and the current
I, taken equal to zero at z = =&I. Then,

E!. = ZI, 9-3)

where Z = the conductor impedance in ohms per meter length of the con-
ductor due to skin effect
I, = the total current
The electric field E outside the conduetor is derivable entirely from the
vector potential A. That is,

2
E = —jf:v (V - A) — jwA (9-4)

Neglecting the end faces, the tangential E outside the conductor will
have only an £, component. Since the current is entirely in the z direction,
A has only a z component. Hence, at the conductor surface (9-4) becomes

B = —j %(
Now equating (9-3) and (9-5) in accordance with the boundary condition
of (9-1), we obtain a wave equation,

dA,
9z

&4, 2
622 + 6 At) (9'5)

+ 6’4, = j% ZI, (9-6)

This completes the first three steps in the outline of Sec. 9-2.

9-4. Hallén’s Integral Equation. We next proceed to obtain a solution
of (9-6), which is a one-dimensional wave equation in the vector potential
A.. The equation is of the second order and first degree. If the antenna
conductivity is infinite, Z = 0 and the equation becomes homogeneous.
However, when Z is not zero, the equation is not homogeneous and its
solution is given as the sum of a complementary function 4, and a partic-
ular integral 4,." That is

A, = A, + A, (9-7)

tJ. W. Mellor, “Higher Mathematics for Students of Chemistry. and Physics,”
Longmans, Green & Co., Inc., New York, pp. 413-414.
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-Introducing the values of A, and A, (9-7) becomes
A= —L(Cyeos e+ Crsinpr) + % [ 19sinpe~9ds 99

Assume that the antenna is excited symmetrically by a pair of closely
spaced terminals. Then

z I,(2) = I,(—2)
and A.(2) = A.(~—7) (9-9)
]
2=l r':- The constant C, in (9-8) may be eval-
! uated as equal to one-half the applied
z r (p.$.2)  terminal voltage V. Thus,
1
7z ! C, =%V, (9-10)
{
dz, & Let us now express the vector po-
o : tential A, in terms of the current on the
% antenna. For a conductor of length
z = —ltoz = I, as shown in Fig.
9-3, the vector potential A, at any
point outside the conductor or at its
surface is
+1
_x [T L)
i 4.=£ f_l =l g,
Fig. 9-3. Construction for obtaining M REDRFELE Sty
vector potential A,. = 4[1r = T dzy  (9-11)
-1

where » = [p* + (z — )]}
z; = a point on the conductor (=1 < 2z, < 4 1)
Inserting the values of C, and A, from (9-10) and (9-11) in (9-8) and re-
arranging yields Hallén’s integral equation,’

/~+l I“ e—iﬂr

J; r

Lne dz, = C, cos Bz + Ve sin 82|
Ax 2

—z f "I sin (z — ) ds (9-12)

1 An integral equation is an equation in which an unknown function appears under the
integral sign. In this case, the unknown function is the antenna current I,,.

In the integral-equation approach to a boundary-value problem, the independent
variable ranges over the boundary surface (in this case, the antenna) so that the boun-
dary conditions are incorporated in the integral equation. This is in contrast to the
situation with the differential equation approach, in which the independent variable
ranges throughout space, with a solution being sought that satisfies the boundary
conditions.
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The absolute value sign on z in the second term of the right side of (9-12)
has been introduced because of the symmetry condition of (9-9). Hallén’s
equation (9-12) is an equation in the current I,, on the conductor. If
(9-12) could be solved for I,,, the current distribution could be obtained
as a function of the antenna dimensions and the conductor impedance.

The term with Z has a negligible effect provided that the antenna is a
good conductor. Thus, assuming that Z = 0 (conductivity infinite), we
can put Hallén’s integral equation in a simpliﬁed form as follows,

+1 —1ﬂr

304

—~1

dz, = C, cos Bz + —L sin Ble| (9-13)
In (9-13) we have put ¢** = 1 and written cu/4x = 30. This completes
steps 4 through 7 of the outline of Sec. 9-2.

9-5. First-order Solution of Hallén’s Equation." The problem now is to
obtain a solution of (9-13) for the antenna current 7, which can be evalu-
ated. As a first step in the solution, let the integral in (9-13) be expanded
by adding and subtracting I,. That is,
+1 I + I ~ifr __ I

H -
+ I,‘ iBr

dz 1 - 2 dzl (9'14)

+1 +1 -—1ﬂr_
_If dz‘+ f Le7 =Ly (915

Integrating the first term in (9-15) and putting p = @ we have

-1

17, 2
d’—:‘=9+1n[1—<§>]+a (9-16)
-1
where
21 total antenna length
=2h =20 conductor radius ©-17)
and

1 2AREY ARY
-, N e+ illi+G2) ) o
n 1+l—z+ 1+l+z+ (9-18)
Substituting (9-16) into (9-15), and this in turn into (9-13), yields,

1, = 50—9 (Cl cos Bz + ;— V7 sin ﬂ]z})

e[ (e nae [ )

1 The development in this and following sections is similar to that given by Erik
Hallén, Theoretical Investigations into the Transmitting and Receiving Qualities of
Antennae, Nova Acta Regiae Soc. Sci. Upsaliensis, Ser. IV, 11, No. 4, 1-44, 1938; also by
Ronold King and C. W. Harrison, Jr., The Distribution of Current, Along a Symmetrieal
Center-driven Antenna, Proc. [.R.E., 31, 548-567, October, 1943.
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At the end of the antenna the current is zero. Thus, whenz =11, =0
50 that (9-19) reduces to
1 +1 Ihe—iﬁrx

C, cos Bl + VTsm6l>+ G "
~1 1

3 oa ( dz, (9-20)

wherer, = V/( — z))° + d*
Now subtracting (9-20) from (9—19) as done by Hallén, we have

0=

I, = 3—_65 [Cl(cos Bz — cos Bl) + VT(sm Blz| — sin 53)]

SN
- f L dzl} (9-21)

Proceeding with Hallén’s solution, the quantity in the braces in (9-21)
is taken as zero so that the current I,, given by the terms in the brackets,
becomes a zero-order approximation, designated I,,. Thus,

ItD = - (C FOI + VT GO:) (9-22)

309

where the following symbols have been introduced
F,, = cos Bz — cos Bl
G,. = sin Blz| — sin Bl

Substituting 1., as given by (9-22), for I, on the right side of (9-21), a
first~order approximation I,; can be obtained for the current. That is,

(9-23)

i

—dalelr s ) e irdo )] o
L. = 3OQ[CI(FD,+ + 5 Vol Go. + 2 (9-24)

where F,, = F,(z) — F,(])

2 g —ifr
R
+i —iBr:
Py = — [ FoelT77 4
-1 T
Glz = Gl(z) — Gl(l)

(,(2) is the same as F,(2) with G substituted for F and G,(l) is the same
as F\(I) with @ substituted for F.

If (9-24) is now substituted for I, on the right side of (9-21), a second-
order approximation for the current can be obtained. Continuing this
process yields third-order and higher order approximations, and the
solution for the antenna current I, takes the form
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Il 3OQ [CI(FOI + Q + 2+

G GZ:

+ 5 VT<GOz + Q + 2 + >] (9‘25)

Substituting I, as given by (9-25) into (9-20) yields

_ 160+ /960 + --- _
¢ = k "'I:Fo(l) + (I/QF, () + ] (9-26)

Inserting C; from (9-26) in (9-25) and rearranging, the current is given
by the asymptotic expansion,

[ iz [SIHB(Z— 2 ) & (/) + o/ ) +
FT 609 cos Bl + (di/Q) + (dy/ Q) + -

} (9-27)

where b, = Fy(2) sin 8l — F,(1) sin glz| + Gi(}) cos 8z — G,(z) cos 8l

d, = Fl(l)
Neglecting b,, d,, and higher order terms, the first-order solution for the
antenna current is

Ve |sin B — |z ]) + (0,/D
T 609[ cos 8l + (d,/Q) ] (9-28)

The quantities b, and d; have been calculated in terms of real and imagi-
nary functions' by King and Harrison for several values of ! and curves
given.” This completes steps 8 through 11 of the outline of See. 9-2.

9-6. Length-Thickness Parameter Q. The above development is based
on the assumptions that I >> a and Ba < I. The condition that [ >> a
will be arbitrarily taken to mean that
é > 60 (9-29)
The ratio I/a equals the ratio of the total length of the cylindrical antenna
to the diameter. Thus,

Total length 21 l

Diameter ~ 2a a
When I/a = 60, the value of Q from (9-17) is

Q=21n%l=2ln12029.6

1y = M + M7 and  dy = A + jA"

3 Ronold King and C. W. Harrison, Jr., The Distribution of Current Along a Sym-
metrical Center-driven Antenna, Proc, I.R.E., 31, 548-567, October, 1943.
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A graph of Q as a function of the ratio of the total length to the con-
ductor diameter is presented in Fig. 9-4.

C\O 20 4060 100 200 1400 6001000 2000 4000 6000 10000

a
Fra. 9-4. The coefficient @ as a function of the total length to diameter ratio (21/2a)
or length-to-radius ratio (I/a) of a cylindrical antenna,

Another factor which restricts I/a to large values (I/a > 60) is that for
asymptotic convergence of (9-27) @ must exceed a certain value. If Q is
too small, the series may diverge.

9-7. Equivalent Radius of Antennas with Noncircular Cross Section.
The above discussion in this and preceding sections deals with uniform
eylindrical antennas, that is, antennas of circular cross section (radius = a).
According to Hallén,' uniform antennas with noncircular cross section

can also be treated by taking an

I._g_.’ | N equivalent radius. For square cross
== [ T |  sections of side length ¢ (Fig. 9-5),
/ o A—T_ /’ y?\\ the equivalent radius is
e — ’ @ = 059
\ / . \\\ /, f 0Jq
4 R ’s:flgi:) while for thin flat strips of width w
fg:g;ztor the equivalent radius is
Fi1e. 9-5. Conductors of square and flat a = 0.25w
cross section with equivalent circular
conductors of radius a. TFor any shape of cross section there

exists an equivalent radius and hence
a value of Q. In all cases it is assumed that the cross section is uniform
over the entire length of the antenna.

1 Erik Hallén, Theoretical Investigations into the Transmitting and Receiving Qual-
ities of Antennae, Nova Acta Regiae Soc. Sci. Upsaliensis, Ser. IV, 11, No. 4, 1-44, 1938.
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9-8. Current Distributions. The amplitude and phase of the current
along cylindrical antennas of three lengths and two values of the total
length-diameter ratio (I/a) are presented in Figs. 9-6, 9-7, and 9-8.
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=

-
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Fig. 9-6. Relative current amplitude and phase along a center-fed }-wavelength
eylindrical antenna (20 = A\/2) for total length-to-diameter ratios (I/a) of 75 and infinity
(after King and Harrison). Distance from the center of the antenna is expressed in
wavelengths.

Figure 9-6 is for a i-wavelength antenna (2l = A/2), Fig. 9-7 for a full-
wavelength antenna (27 = ), and Fig. 9-8 for a 1}-wavelength antenna
(21 = 1% ). For each length the relative amplitude and phase of the
current are presented for @ = 10 and @ = = corresponding to total length-
to-diameter ratios (I/a) of 75 and =. The amplitude curves are adjusted
to the same maximum value, and all phase curves are adjusted to the
same value at the ends of the antenna.

It is generally assumed that the current distribution of an infinitesimally
thin antenna (I/a = «) is sinusoidal, and that the phase is constant over a
-wavelength interval, changing abruptly by 180° between intervals. This
behavior is illustrated by the solid curves in Figs. 9-6, 9-7, and 9-8.

The dashed curves illustrate the current amplitude and phase variation
for I/a = 75 (@ = 10). The difference between these curves and the
solid curves (I/a = =) is not large but is appreciable. The dashed curves
(I/a = 75) are from the distributions given by King and Harrison' as
calculated from (9-28), the current being expressed in terms of its ampli-
tude and the phase angle relative to a reference point. Thus,

Iz = 'Iz ] __/_0 (9-30)

! Ronold King and C. W. Harrison, Jr., The Distribution of Current Along a Sym-
metrical Center-driven Antenna, Proc, I.R.E., 31, 548-567, October, 1943.
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The effect of the length-thickness ratio on the current amplitude is well
iftustrated by Fig. 9-7 for a full-wavelength antenna. When the antenna

_ 1or

3

h=)

2 =

5 ¢ /\

(=)

€

v

5 A\

59 0 s M
5 4 3 2 . 0 2 3 4 5

Distance in wavelengths from center of ontenng

Fic. 9-7. Relative current amplitude and phase along a center-fed full-wavelength
cylindrical antenna (21 = A) for total length-to-diameter ratios (I/a) of 75 and infinity
{after King and Harrison). Distance from the center of the antenna is expressed in
wavelengths.
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Fic. 9-8. Relative current amplitude and phase along a center-fed 1i-wavelength
cylindrical antenna (21 = 11)) for total length-to-diameter ratios (I/a) of 75 and infinity
(after King and Harrison). Distance from the center of the antenna is expressed in
wavelengths.

is infinitesimally thin, the current is zero at the center. As the antenna
becomes thicker, the current minimum increases and at the same time
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shifts slightly toward the end of the antenna. For still thicker antennas
(I/a < 75), Eq. (9-28) is no longer a good approximation for the current,
but it might be expected that the above trend would continue.

The effect of the length-thickness ratio on the phase variation is well
illustrated by Fig. 9-8 for a 1i-wavelength antenna. When the antenna
is infinitesimally thin, the phase varies as a step function, being constant
over 1 wavelength and changing by 180° at end of the 3-wavelength
interval (solid line, Fig. 9-8). This type of phase variation is observed in a
pure standing wave. As the antenna becomes thicker, the phase shift at the
end of the 1-wavelength interval tends to become less abrupt (dashed curve
for I/a = 75). TFor still thicker antennas {l/a < 75), it might be expected
that this trend would continue and for very thick antennas would tend to
approach that of a pure traveling wave as indicated by the straight dashed
lines in Fig. 9-8.

9-9. Input Impedance. The input impedance Z; of a center-fed cylin-
drical antenna is found by taking the ratio of the input or terminal voltage
Vr and the current I, at the input terminals. That is,

Zp= 7= +jXT (9'3])

where I, = I,(0)

R; = terminal resistance

X r = terminal reactance
Cherefore, setting z = 0 in (9-28) and inserting this value of current in
9-31) yields Hallén’s relation for the input impedance,

cos Bl + (dl/Q):I
sin Bl + (b,/Q)

This is a first-order approximation for the input impedance. If the second-
order terms are included [see (9-27)], Hallén’s input-impedance expression
has the form

Zp = — jGOQ[ (9-32)

— _e0ql 0SBl (d/Q) + (/) )
fr = [sin 5l+(b1/9)+(b2/92):' (9-33)

This relation has been evaluated by Hallén' who has also presented the
results in chart form.> Impedance spirals based on Hallén’s data are
presented in Fig. 9-9 for center-fed cylindrical antennas with ratios of
total length to diameter (I/a) of 60 and 2,000. The half-length ! of the

! Erik Hallén, On Antenna Impedances, T'rans. Roy. Inst. Technol., Stockholm, No. 18,
1947.

? Erik Hallén, ‘“Admittance Diagrams for Antennas and the Relation Between An-
tenna Theories,” Cruft Laboratory Tech. Rep. No. 46, Harvard University, 1948,
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antenna is given along the spirals in free-space wavelengths., The im-
pedance variation is that which would be obtained as a function of fre-
quency for an antenna of fixed physical dimensions. The difference in
the impedance behavior of the thinner antenna (I/a = 2,000) and of the
thicker antenna (I/a = 60) is striking, the variation in impedance with
frequency of the thicker antenna being much less than that of the thinner

antenna.
+2000
eyt i f—
[ - [ — |
Fao i
+1500

oo # S \ N

+500

1000 1500 2000 2500 3000

N=96
Zclave)=454

~500 =%

—1000 \ / 7
\ o /
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\ /V Q=188
2y (ave)=873
—-2000 l

Fra. 9-9. Calculated input impedance (R + jX) in ohms for cylindrical center-fed
antennas with ratios of total length to diameter (21/2a) of 60 and 2,000 (after Hallén).

The impedance, given by (9-32) or (9-33), applies to center-fed cylin-
drical antennas of total length 2] and diameter 2a. To obtain the im-
pedance of a cylindrical stub antenna of length [ and diameter 2a operating
against a very large perfectly conducting ground plane, (9-32) and (9-33;
are divided by 2. The impedance curve based on Hallén’s calculations
for a cylindrical stub antenna with an [/a ratio of 60 is given by the solid
spiral in Fig. 9-10. The length [ of the stub is indicated in free-space
wavelengths along the spiral. The measured impedance variation of the
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same type of antenna (I/a = 60) as given by Dorne’ is also shown in Fig.
9-10 by the dashed spiral. The agreement is good considering the fact
that the measured curve includes the effect of the shunt capacitance at
the gap and the small but finite antenna terminals.

2a

+200

+100

~100

=200

Fie. 9-10. Comparison of calculated (solid curve) and measured (dashed curve) input
impedance (E + 7X) in ohms for eylindrical stub antenna with ground plane for length-
to-radius ratio ({/a) of 60.

The measured input impedance of a cylindrical stub antenna with an
l/a ratio of 20 is shown in Fig. 9-11. Comparing this curve with the
dashed curve of Fig. 9-10, it is apparent that the trend toward decreased
impedance variation with smaller I/a ratio (increased thickness) sug-
gested by Fig. 9-9 is continued to smaller I/a ratios. A measured im-
pedance curve for I/a = 472 is also included in Fig. 9-11.*

1 Chap. 4 by A. Dorne, “Very High Frequency Techniques,” by Radio Research Lab-
oratory Staff, McGraw-Hill Book Company, Inc., New York, 1947.

See also G. H. Brown and O. M. Woodward, Experimentally Determined Impedance
Characteristics of Cylindrical Antennas, Proc. I.R.E., 33, 257-262, April, 1945,

D. D. King, The Measured Impedance of Cylindrieal Dipoles, J. Applied Phys., 1T,
844-852, October, 1946.

? The curves in Fig. 9-11 are based on data presented by Dorne.!
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An antenna is said to be resonant when the input impedance is a pure
resistance. On the impedance diagrams of Figs. 9-9, 9-10, and 9-11
resonance occurs where the spirals cross the X = 0 axis. At zero frequency
all the impedance spirals start at R = 0 and X = — ». As the frequency
increases, the reactance decreases and the resistance also increases although
more slowly. The first resonance occurs when the length ! of the antenna
is about 1 wavelength. The resistance at the first resonance is designated

2a
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A
+300 v
/ Ao l

+200
.3// \
+100 A8 5
.2/ S
x 0 4 \\
¥ 2001 300 400 500 600 100 00 900
HJ_,‘ 9 } R
100 113 l.p T4
- e
] % L /
. 5=20
~-200 N ®
N Wase 7
-300 \* Z, (ave)=161
.6 //
—400 /(\ §=472/7
V\N_/\/\g ~—{n=1371

~500 Zyfove)=350 |

l

Fra. 9-11. Measured input impedance (B + jX) in ohms of cylindrical stub antenna
with ground plane for length-to-radius ratio ({/a) of 20 and 472,

R,. As the frequency is increased, the length of the antenna becomes
greater and the second resonance occurs when the length [ is about %
wavelength. The resistance at the second resonance is designated R,.
At the third resonance (resistance =R,), the antenna length I is about
¢ wavelength and at the fourth resonance (resistance =R,) [ is about 1
wavelength. As the frequency is increased indefinitely, an infinite num-
ber of such resonances can be obtained.

Since it is common practice to operate antennas at or near resonance,
the values of the resonant resistances are of interest. Curves bhased on
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Hallén’s calculated graphs' are presented in Fig. 9-12 for the first four
resonances of a cylindrical stuh antenna with large ground plane as a
function of the length-radius ratio (I/a). The lowest value of I/a for
which Hallén gives data is 60, since the accuracy of (9-33) tends to de-
teriorate for smaller I/a values. Thus, the solid part of the curves
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Fic. 9-12. Resonant resistance of cylindrical stub antenna with ground plane as a
function of the length-to-radius ratio (!/a). Curves are shown for the first four reso-
nances. For cylindrical center-fed antennas (total length 27) multiply the resistance
by 2.

(I/a > 60) are according to Hallén’s calculated values. The dashed part
of the curves are extrapolations to smaller values of I/a. The extrapolation
is without theoretical basis but is probably not much in error. A few
measured values of resonant resistance from Dorne’s data® are shown as

1 Erik Hallén, “Admittance Diagrams for Antennas and the Relation Between Antenna
Theories,” Cruft Laboratory Tech. Rep. No. 46, Harvard University, 1948.

? Chap. 4 by A. Dorne, ‘‘Very High Frequency Techniques,”” by Radio Research Lab-
oratory Staff, McGraw-Hill Book Company, Inc., New York. 1947,
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points in Fig. 9-12, the dotted lines indicating to which resonant resistance
the points correspond. )

Figure 9-12 illustrates the difference in the effect of antenna thickness
on the resistance at odd and even resonances. The resistance at odd
resonances (R,, R,, etc.) is nearly independent of the antenna thickness.
The first resonant resistance R, is about 35 ohms, and the third resonant

2L=%_‘- 21=2A 21=32 21=22

Y-
S

56 K

30 3% X-
30 & X-
SU P8 K-

Fig. 9-13. Field patterns of cylindrical center-fed linear antennas of total length 2!
as a function of the total length-to-diameter ratio (I/a) and also as a function of the
total length (21) in wavelengths.

\_.

resistance R; is about 50 ohms over a large range of I/a ratios. On the
other hand, the antenna thickness has a large effect on the resistance at
even resonances (R, R,, ete.). The thicker the antenna, the smaller the
resistance. For example, the second resonant resistance R, is about 200
ohms when I/a = 10 and increases to about 1,500 ohms at I/a = 1,000.
The fourth resonant resistance behaves in a similar fashion, the values
being somewhat less.
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The difference in the resistance behavior at odd and even resonances ig
related to the current distribution. Thus, at odd resonances the antenna
length ! is an odd number of } wavelengths long (approximately), and a
current maximum appears at or near the input terminals. At even reso-
nances the antenna length ! is an even number of 3 wavelengths long
(approximately), and a current minimum appears at or near the input
terminals. As indicated by the current distribution curves of Figs. 9-7
and 9-8, one of the most noticeable effects of an increase in antenna thick-
ness is the increase of the current at current minima. Thus, when a
current minimum is at or near the input terminals an increase in the
antenna thickness raises the input current I for a constant input voltage
V r so that the resonant resistance given by the ratio V /I, is reduced.

9-10. Patterns of Cylindrical Antennas. Formulas for calculating the
far-field patterns of thin linear antennas were developed in Chap. 5.
Although these relations apply strictly to infinitesimally thin conductors,
they provide a first approximation to the pattern of even a relatively
thick cylindrical antenna. This is illustrated by the patterns in Fig. 9-13
for center-fed linear cylindrical antennas of total length 2I equal to %,
1, 13, and 2 wavelengths. The calculated patterns for infinitesimally thin
antennas are shown in the top row. Three of these patterns were given
previously in Fig. 5-9. In the next three rows patterns measured by
Dorne' are given for I/a ratios of 450, 50, and 8.7. The principal effect
of increased antenna thickness appears to be that some of the pattern
nulls are filled in and that some minor lobes are obliterated (note the
patterns in the third column for 21 = 13 X).

9-11. The Thin Cylindrical Antenna. If the assumption is made that
the cylindrical antenna is infinitesimally thin (2 — ), the current dis-
tribution given by (9-27) or (9-28) reduces to

_JjVesing(l — |z )
L= 60 cos Sl (9-34)

Although © approaches infinity, the ratio ¥V;/Q may be maintained con-
stant by also letting V, approach infinity. According to (9-34), the shape
of the current distribution is sinusoidal. That is,

I, =Fksnp(l— |z (9-35)

where & = a constant
The input impedance Z; is the ratio V5/I; where I is the current at
the terminals (¢ = 0). Thus from (9-34)

t Chap. 4 by A. Dorne, “Very High Frequency Techniques,” by Radio Research Lab-
oratory Staff, McGraw-Hill Book Company, Inc., New York, 1947.
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Vi
Iy

In (9-36) we may regard Q as large but finite. The terminal impedance
Z r according to (9-36) is a pure reactance X . Equation (9-36) is identical
to the relation for the input impedance of an open-circuited lossless trans-
mission line of length 8l (see Appendix Section 3) provided that 60Q is
taken equal to the characteristic impedance of the line. If, by analogy,
60Q is taken equal to the average characteristic impedance Z, (ave.) of the
center-fed cylindrical antenna then, from the value of @ given in Sec. 9-6,

Z, (ave.) = 602 = 120 In -21 (9-37)

Z, = = —j60Q cot Bl (9-36)

This relation is of the same form as Schelkunoff’s expression for the char-
acteristic impedance Z, of a thin biconical antenna given by (8-21) since for
small cone angles 6,, = a/1 so that (8-21) becomes

Z, = 120 ln?a—l (9-38)

where a = end radius of the cone as shown in Fig. 9-14.
16,

......
-..._s%

L
==

l

\

Fia. 9-14. Biconical antenna of end radius @ and length 7.

The average characteristic impedance of a center-fed cylindrical antenna
as given by Schelkunoff is

Z, (ave.) = 120<1n2;l - 1) (9-39)
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The average impedance of a cylindrical stub antenna with a large ground
plane is one-half the value of (9-39).

As l/a -, (9-39) reduces to the form given in (9-37). However, for
finite values of I/a the average characteristic impedance of a cylindrical
antenna is the same as for a biconical antenna of the same length ! but
with an end radius a which is larger than the radiug of the cylindrical
conductor. This is suggested in Fig. 8-14a. For example, a cylindrical
antenna with an I/a ratio of 500 has an average characteristic impedance
equal to that of a biconical antenna of the same length with an end radius
2.8 times larger than the radius of the cylindrica: conductor.

In Fig. 9-9 the calculated input impedance is presented for cylindrical
center-fed antennas with total length-to-diameter ratios (2/2a = l/a) of
60 and 2,000. The average characteristic impedance of these antennas
by (9-39) is 454 and 873 ohms, respectively. The curve for the I/a ratio
of 60 [Z, (ave.) = 454] has approximately the same form as the calculated
impedance spiral in Fig. 8-12 for a 2.7° half-angle biconical antenna
(Z, = 450).

In Fig. 9-11 the measured input impedance is shown for cylindrical stub
antennas with /e ratios of 20 and 472. The average characteristic im-
pedance of these antennas as given by one-half of (9-39) is 161 and 350
ohms, respectively. The curve for I/a = 20 [Z, (ave.) = 161] is of the
same general form (although displaced downward) as would be anticipated
from Fig. 8-13 since a spiral for Z, (ave.) = 161 should lie between those
shown in Fig. 8-13 for Z, = 146 and Z, = 188.

9-12. Cylindrical Antennas with Conical Input Sections. It is common
practice to construct cylindrical antennas with short conical sections at
the input terminals as indicated at the bottom of Fig. 9-13. If the cylinders
are of large cross section, the conical sections are particularly desirable
in order to reduce the shunt capacitance at the gap. Since the measured
impedance of an antenna includes the effect of the gap capacitance and
the small but finite terminals, the measured impedances will differ more
or less from the theoretical values. It is to be expected that measured
values will agree better with calculated ones when end cones are used
rather than when the ends of the cylinders are butted close together.

9-13. Antennas of Other Shapes: the Spheroidal Antenna. The solution
of a boundary-value problem may be facilitated if the boundary can be
specified by one coordinate of an appropriate coordinate system. A
spherical antenna or one in the shape of an elongated ellipsoid of revolu-
tion (prolate spheroid) as in Fig. 9-15, is amenable to such treatment since
the surface of the spheroid corresponds to a particular value of one co-
ordinate of a spheroidal coordinate system. By varying the eccentricity
of the ellipsoid, one may study the properties of the sphere at the one

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



250 ANTENNAS [CHar. 9

extreme of eccentricity and of a long thin conductor at the other extreme.
This problem has been treated at length by Stratton and Chu’ and by
Page and Adams.’® Stratton and Chu give admittance and impedance
curves for various length-to-diameter (L/D)
ratios (see Fig. 9-15). For long, thin ellip-
'l soids the impedance characteristics are simi-
:> lar to those deduced by other methods. The
o current distribution for thin j-wavelength
spheroids is also found to be nearly sinusoi-
Fiq. 9-15. Prolate spheroidal dal. .
antenna. A point of interest is that for spheroids of
the order of i-wavelength long, the imped-
ance variation with frequency decreases with decreasing L/D ratios (thicker
spheroids). That is to say, resonance with thick spheroids is broader than
with thin ones. This is in agreement with the well-known fact that thick
antennas have broader band impedance characteristics than thin ones.

le L {

|

PROBLEMS

9-1. What is the initial relation used in developing Hallén’s integral equation?

9-2. Indicate the principal steps required to arrive at the current distribution
and terminal impedance of a cylindrical antenna by means of Hallén’s integral
equation.

1J. A. Stratton and L. J. Chu, Steady State Solutions of Electromagnetic Field Prob-
lems, J. Applied Phys., 12, 230-248, March, 1941.

? L. Page and N. 1. Adams, The Electrical Oscillations of a Prolate Spheroid, Phys.
Rev., 53, 819-831, 1938.
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CHAPTER 10
SELF AND MUTUAL IMPEDANCES

10-1. Introduction. The impedance presented by an antenna to a
transmission line can be represented by a two-terminal network. This
is illustrated in Fig. 10-1 in which the antenna is re-
placed by an equivalent impedance Z connected to
the terminals of the transmission line." In designing
a transmitter and its associated transmission line, it Antenna—___ |
is convenient to consider that the antenna is simply
a two-terminal impedance. This impedance into
which the transmission line operates is called the
terminal or driving-point impedance. If the antenna
is isolated, that is, remote from the ground or other
objects, and is lossless,” its terminal impedance is Transmission
the same as the self~ympedance of the antenna. This e
impedance has a real part called the self-resistance
(radiation resistance) and an imaginary part called
the self-reactance. The self-impedance is the same

for reception as for transmission. Ej
In case there are nearby objects, say, several 3
other antennas, the terminal impedance can still be Equivolent —

. . impedance
O~ rork. However, it
replaced by a two-terminal network. However, its Frc. 101, Transmis-

value is determined not only by the self-impedance 11 6 with antenna
of the antenna but also by the mutual impedances and with equivalent
between it and the other antennas and the currents impedance.

flowing in them.

1Because of the effect of the gap size at the center of the antenna and of the terminal
arrangement, there may be some indefiniteness as to the value of the antenna impedance.
Suppose, for example, that the antenna impedance Z is defined as that impedance which
placed at the antenna terminals of the transmission line results in the same impedance at
the left-hand end of the line (Fig. 10-1) as is actually measured. In general, this im-
pedance is a function of the characteristics of the transmission line. Although this
effect must sometimes be considered, it is usually negligible provided that the antenna
gap or terminal spacing is small compared to the wavelength (gap of the order of 0.01
wavelength or less). See R. King and T. W. Winternitz, The Cylindrical Antenna with
Gap, Quart. Applied Math., 5, 403-416, January, 1948.

2 By lossless is meant that there is no Joule heating associated with the antenna.
There may, of course, be radiation. If the antenna is not lossless, an equivalent loss
resistance appears at the terminals in series with the seli-resistance or radiation
resistance.

251
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In Chap. 5 an expression was developed for the radiation resistance
(or self-resistance) of thin linear antennas. In the following sections
this analysis is extended to yield expressions for both the self-resistance
and the self-reactance. In addition, expressions are developed for the
mutual resistance and mutual reactance of two thin linear antennas. These
expressions will be used in Chap. 11 to find the driving-point impedance
in an array of linear antennas. Even though the impedances apply strictly
to infinitesimally thin antennas, they are useful in connection with practical
types of cylindrical antennas, provided that the antennas are thin.

In developing the subject of antenna impedance, an important and much-
used theorem is that of reciprocity.  Accordingly, this topic is discussed
first and then applied to the impedance problem.

10-2. Reciprocity Theorem for Antennas. The Rayleigh-Helmholtz reci-
procity theorem' has been generalized by Carson® to include continuous
media. This theorem as applied to antennas may be stated as follows:
If an emf is applied to the terminals of an antenna A and the current measured
at the terminals of another antenna B, then an equal current (in both ampli-
tude and phase) will be obtained at the terminals of antenna A if the same
emf is applied to the terminals of antenna B. It is assumed that the emfs
are of the same frequency and that the medium is linear, passive, and also
isotropic. An important consequence of this theorem is the fact that under
these conditions the transmitting and receiving patterns of an antenna are
the same.

As an illustration of the reciprocity theorem for antennas, consider the
following two cases.

Case 1. Let an emf V, be applied to the terminals of antenna A as in
Fig. 10-2a. This antenna acts as a transmitting antenna, and energy flows
from it to antenna B, which may be considered as a receiving antenna,
producing a current I, at its terminals.® It is assumed that the generator
supplying the emf and the ammeter for measuring the current have zero
impedance, or if not zero, that the generator and ammeter impedances are
equal.

1 Lord Rayleigh, “The Theory of Sound,”” The Macmillan Company, New York, Vol. 1
(1877, 1937), pp. 98 and 150-157, and Vol. 2 (1878, 1929), p. 145.

tJ. R. Carson, A Generalization of the Reciprocal Theorem, Bell System Tech. J., 3,
393-399, July, 1924.

J. R. Carson, Reciprocal Theorems in Radio Communication, Proc. I.R.E., 17,
952-956, June, 1929.

Stuart Ballantine, Reciprocity in Electromagnetic, Mechanical, Acoustical, and
Interconnected Systems, Proc. I.R.E., 17, 929-951, June, 1929.

3 Although the emf V, and the current I, are scalar space quantities, they are complex
or vector quantities with respect to time phase. The term “‘phasor’ is sometimes used to
distinguish such a quantity from a true space vector.
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Case 2. If an emf V, is applied to the terminals of antenna B, then it
acts as a transmitting antenna and energy flows from it to antenna A as
in Fig. 10-2b, producing a current I, at its terminals.

Now if V, = V,, then by the reciprocity theorem I, = I,.

The ratio of an emf to a current is an impedance. In Case 1 the ratio
of V, to I, may be called the transfer impedance 7,,, and in Case 2 the
ratio V, to I, may be called the traunsfer impedance Z,,. Then by the
reciprocity theorem it follows that these impedances are equal. Thus,

v, :
=Ty =L = T (10-1)
6 I,

In order to prove the reciprocity theorem for antennas, let the antennas
and the space between them be replaced by a network of linear, passive,

In
—
Va(‘\z Energy
flow I, 2 I 2 ]
Antenna B ! | R -
Antsnna A Va® EZ?__J C/blb
(a)
(a)
Vb
l,@ Energy
flow L(/”
Antenna B
Antenna A e
(%) (b)
Fra. 10-2, Illustrations for reciprocity Fia. 10-3. Equivalent circuits used in
theorem. proof of reciprocity theorem.

bilateral impedances. Since any four-terminal network can be reduced to
an equivalent T section,' the antenna arrangement of Case 1 (see Fig.
10-2a) can be replaced by the network of Fig. 10-3a.

"This is true in so far as the amplitude and phase of the input voltage and output cur-
rent are concerned.
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The current through the meter is

L.=1 7. + 7. (10-2)
where

—_ V" — Va(Z2 + Z3)
L= G Gt 291 ~ ZiZs + 22 + 202, 109

Introducing (10-3) into (10-2) yields the current through the meter in
terms of the emf V, and the network impedances. Thus,

— VaZ3
VS T+ 22 + Zaz, (10-4)

1

If the locations of the emf and current meter are interchanged, as in
Fig. 10-3b, we obtain

_ V.2,
L=%27 2.2, % 2.7, (10-5)

Comparing (10-4) and (10-5), it follows that if V, = V, then I, = I,,
proving the theorem.

10-3. Self-impedance of a Thin Linear Antenna. In this section an
induced emf method' as used by Carter is applied to the determination of
the self-impedance of a thin linear antenna.? The antenna is center-fed
with the lower end located at the origin of the coordinates as shown in
Fig. 10-4. The antenna is situated in air or vacuum and is remote from
other objects. Since the antenna is thin, a sinusoidal current distribution
will be assumed with the maximum current I, at the terminals. Only
lengths L which are an odd multiple of 7 wavelength will be considered
so that the current distribution is symmetrical, with a current maximum
at the terminals. The current distribution shown in Fig. 104 is for the
case where L = A/2. The current at a distance z from the origin is desig-
nated I,. Then,

I, = 1I,sinpz (10-6)

1The relation of this method to the one used in Chap. 5, for the calculation of radiation
resistance, is discussed in Sec. 10-10.

2P, 8. Carter, Circuit Relations in Radiating Systems and Applications to Antenna
Problems, Proc. I.R.E., 20, 1004-1041, June, 1932,

J. Aharoni, “Antennae,” Oxford University Press. New York, 1946, pp. 174, 185.

A. A. Pistolkors, The Radiation Resistance of Beam Antennas, Proc. I.R.E., 17,
562-579, March, 1929.

R. Bechmann, Calculation of Electric and Magnetic Field Strengths of Any Oscillat-
ing Straight Conductors, Proc. I.R.E., 19, 461-466, March, 1931.

R. Bechmann, On the Calculation of Radiation Resistance of Antennas and Antenna
Combinations, Proc. I.R.E.. 19, 1471-1480, August, 1931.
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Suppose that an emf V,, applied to the terminals of the antenna of
Fig. 10-4 produces a current I, at a distance z from the lower end. The
ratio of Vy; to I, may be designated as the transfer impedance Z;,. Thus,

_
Il

Next let the applied field at the antenna and parallel to it be £,. This
is the field produced by the antenna’s own current. This field induces a
field E,; at the conductor such that the boundary conditions are satisfied.
For a perfect conductor these are that the total field E., is zero or that
E., = E, + E.; = 0 and therefore E,, = —E,. The emf dV, pro-
duced by the induced field over a length dz —_—
is —FE, dz or

Zy, (10-7)

dV, = —E, dz (10-8)

If the antenna is short-circuited this emf will
produce a current dI, at the terminals. Then
the transfer impedance Z,, is given by

N>

L=

dv,

Z:l = dIl

(10-9)

Fic. 10-4. Center-fed linear
t-wavelength antenna.

Since the reciprocity theorem (Sec. 10-2)
holds not only for two separate antennas but
also for two points on the same antenna, it follows that the transfer
impedances of (10-7) and (10-9) are equal. Therefore,

Vi _ _ 4V, —E,dz
I' - le - Zzl - dIl - dIl (10‘10)
and
Vadl, = —LLE, dz (10-11)

The terminal impedance Z;, of the antenna is given by the ratio of V,
to the total terminal current 7,. Thus,

Z11 = %" (10—12)
1

The impedance Z,, is a constant and is independent of the current ampli-

tude. This follows from the fact that the system is linear. Therefore,

Zy, can also be expressed as the ratio of an infinitesimal emf dV,, at the

terminals to an infinitesimal current dI, at the terminals, or
_Vu_dVy

Zu =t =0 (10-13)
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from which
Vll dI] = Il dVl] (10'14)
Substituting (10-14) into (10-11),
v, = 115 E, dz (10-15)
1

Integrating (10-15) over the length of the antenna, we obtain
L
Va=—7 | LB (10-16)
1 q

where V,, is the emf which must be applied at the terminals to produce
the current I; at the terminals. The terminal impedance Z,; is then
Vll

w= g
1

L
Z = % [ 15, & (10-17)
Il 0
Since the antenna is isolated, this impedance is called the self~impedance.
In (10-17) E, is the z component of the electric field at the antenna caused
by its own current. It will be convenient to indicate explicitly this type
of field by the symbol £, in place of £,. Introducing also the value I,
from (10-6) into (10-17), we obtain for the self-impedance

L
7y = —Il f B, sin Bz dz (10-18)
1 1]

To evaluate (10-18), it is first necessary to derive an expression for the
field £,, along the antenna produced by its own current. Substituting
this into (10-18) and integrating, it is possible to obtain an expression
which can be evaluated numerically. The steps in this development are
given in the following paragraphs.

If expressions can be written for the retarded scalar potential V due
to charges on the antenna and for the retarded vector potential A due to
currents on the antenna, then the electric field everywhere is derivable
from the relation

E=-—-VV — jeA (10-19)
More particularly the z component of E is given by

v .
E, = o JwA, (10-20)

Referring to Fig. 10-5, let the antenna be coincident with the z axis.
A point on the antenna is designated z,. A point P in space is given in
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cylindrical coordinates by p, ¢, 2. Other distances are as shown. Only
lengths L which are an odd multiple of 2 wavelength will be considered.
Thus,

nA
L= 2
wheren = 1,3,5 .-
The scalar potential ¥ at any point is given by
1 P

7o I ¢

v 4e, ff r dr (10-21)
where p is the volume charge density,
r the distance from the charge ele-
ment to the point, and dr is a volume
element. From Fig. 10-5

r=A"p+@e—2)

In the case of a thin wire of length
L, (10-21) reduces to 7

1 L
V== | 2 (10-22) 2, I

Are, Jo

where p; = thelinear charge density Y
on the wire $ »p /

The vector potential A at any
point is given by

e ([ -
A= Ax /-ff r dr (10-23)  prg. 105, Relation of coordinates to

antenna.

r2

Plp,$,2)

where J = the current density
In the case of a thin wire (10-23) reduces to

L
A, = Z_o f L. 4. (10-24)
T Jo r
where I,, = the current on the wire
By the continuity relation between current and linear charge density

_ [l
dz,

oL =

dt (10-25)
The current on the antenna is assumed to have a sinusoidal distribution

as given by (10-6). Introducing the retarded time factor, we have for
the retarded current

I.. = I,sin Bz, (9 (10-26,
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Substituting (10-26) into (10-25) and performing the indicated operations,

the retarded linear charge density is

pr = J—ié cos Bz, ¢’ (*=2) (10-27)

Introducing (10-27) into (10-22) and noting that 8/w = 1/¢, the retarded
scalar potential is

.7 jwt L —igr
v = iLe f cos fz e " g (10-28)
0

4reqc T

Likewise, introducing (10-26) into (10-24), the z component of the re-
tarded vector potential is

e .
_ un[,e“”f sin Bz, ¢ 7%
0

A, dz, (10-29)

47 T
By de Moivre’s theorem

cos Bz; = (e + 77 (10-30;
and

sin 621 — é%(eiﬁz. . e—iﬂzx) (10_31)

Making these substitutions in (10-28) and (10-29)

I ()iw/, L e—iﬁ(zﬁr) eiﬁ(z:—-r)
y =L f r+ dz, (10-32)
0 0
and
. jwt L ~iBlza+r) __ _iBlzs—7)
A, = 7“";‘7‘; f e _— d, (10-33)
0

Equations (10-32) and (10-33) give the retarded scalar and vector
potentials caused by current on the antenna with the assumed sinusoidal
distribution. Substituting these equations into (10-20) yields an ex-
pression for the z component of the electric field everywhere. Thus,

I C;‘wl L 3 (,-—iﬁ(zﬁ—r) (,fﬁ(zx—r)

1€ > + >
=t s &
0

87.'606 T
Jwe I —iB(zy+71) - i8(z1—-7)
ol f [" ‘ szl (10-34)
87|' 0 r
E, dmec \ T - To (10-35)
where
n=\Vp+7 (10-36)
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and
=10 + (L —2)° (10-37)

The factor 1/4mwesc >~ 120x/47 = 30. Also putting the time factor equal to
its absolute value ¢’“* = 1, and Eq. (10-35) becomes

—ifiry —ifirs
E, = —730I 1( + —~——> (10-38)
At the antenna (10-36) and (10-37) become
r=2z (10-39)
and
r=1L—z (10-40)

Substituting these into (10-38) yields the value of the z component of the
electric field E,, af the antenna due to its own current. Thus,

—if(L—e)

) e—iﬁz e

Introducing (10-41) into (10-18) we obtain the self-impedance Z,, of a
thin linear antenna an odd number of 1 wavelengths long. Hence,

—1ﬁs 0‘-18(11—:) .
Zyy = j30 f [ + 45— :|sm 6z dz (10-49)
Applying de Moivre’s theorem to sin gz
o 28 —iBLs i282
- J -1
Z, = ~15f [ Lo )]dz (10-43)
For [ = n\/2 where n = 1, 3,5, ..., ¢ " = ¢’ = —1, so that Eq.
(1043) becomes
—i28z j2fs
Z = —15 f < L . z—l) dz (10-44)

or

L 1 . e—i:’ﬁz 1 1~(5¢
Zu=15 ] Tt 15f 1= "% (045
o
In the first integral let
u = 282 or du = 28 dz

The upper limit z = L becomes u = 28L = 2an, while the lower limit is
unchanged. The first integral then transforms to

15f l-e¢” g, (1046)
o u
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In the second integral let
v=28(L — 2) or dv = —28dz

The upper limit becomes zero while the lower limit becomes 27n. The
second integral then transforms to

. 7(2111 v) 2rn e—iv
—15[ dv = 15[ —-——dv (10-47)

Equations (10-46) and (10-47) are definite integrals of identical form.
Since their limits are the same, they are equal. Therefore (10-45) becomes

2xn . —iu
= 30 f 1=¢" (10-48)
o U

If we now put w = ju, (10-48) transforms to

i27xn _— —w
Zu, = 30 f " dw (10-49)
0 w

The integral in (10-49) is an exponential integral with imaginary argu-
ment. It is designated by Ein (jy). Thus, '

iy 1 . e—w
0 w

Ein (jy) = dw (10-50)

In our case y = 2mwn. This integral can be expressed in terms of the sine
and cosine integrals discussed in Sec. 5-6. Thus,

Ein (jy) = Cin () + 7 Si () (10-51)
or

Ein (j) = 0577 + lny — Ci (y) + 7 8i () (10-52)

Hence, the self-impedance is

Zy = By + jX, = 30 [Cin (2rn) + j Si (27n)] (10-53)
or
Zy;, = 30[0.577 4 In (2wn) — Ci (2mn) + 7 Si (2mn)] ohms (10-54)
The self-resistance is
Ry, = 30Cin (2zn) = 30{0.577 + In (27n) — Ci (2rn)] ohms  (10-55)
and the self-reactance is

X, = 30 8i (2wn) ohms (10-56)

18ee for example, S. A. Schelkunoff, “Applied Mathematics for Engineers and Scien-
tists,” D. Van Nostrand Company, Inc,, New Yark, 1948, p. 377.
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These equations give the impedance values for a thin linear center-fed
antenna that is an odd number (n) of 3+ wavelengths long. The current
distribution is assumed to be sinusoidal (Fig. 10-6). The values are those
appearing at the terminals at the center of the antenna.

In the case of a }-wavelength antenna as shown in Fig. 10-6a, » = 1,
and we have for the self-resistance and self-reactance

u = 30 Cin (2r) (10-57)

and l '

Xy = 308i @r) (10-58) \ -

The value of (10-57) is identical with i z

that given for the radiation resist- l
(a) (b)

ance of a 2-wavelength antenna, in

See. 5-6, Eq. (5-109). Evaluating

(10-57) and (10-58), see Appendix Fia. 10-6. One-half and three-halves
Section 19, we obtain for the self- wavelength antennas.

impedance

Z, = Ry + jX. = 73 + j42.5 ohms (10-59)

Since X, is not zero, an antenna an exact ¥ wavelength long is not resonant.
To obtain a resonant antenna, it is common practice to shorten the antenna
a few per cent to make X,; = 0. In this case the self-resistance is some-
what less than 73 ohms.
For a §-wavelength antenna as shown in Fig, 10-6b, n = 3, and the self-

impedance is

Zy; = 30 [Cin (67) 4+ 7 Si (67)]
or

Zy, = 105.5 4+ 745.5 ohms (10-60)

It is interesting that the self-reactance of center-fed antennas, an exact
odd number of § wavelengths long, is always positive since the sine integral
Si (2rn) is always positive. For large n the sine integral converges around
a value of v/2 (see Fig. 5-11) which corresponds to a reactance of 47.1
ohms. It should be noted that for antenna lengths not an exact odd
number of 3 wavelengths the reactance may be positive or negative as
illustrated for example by Fig. 9-9. However, the foregoing analysis of
this section is limited to antennas that are an exact odd number of %
wavelengths long.

For large n, the self-resistance expression (10-55) approaches the value

Ry = 30[0.577 + In (2xn)] (10-61)

gince Ci (2wn) approaches zero. Thus, the self-resistance continues to
increase indefinitely with increasing n but at a logarithmic rate.
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The more general situation, where the antenna length L is not restricted
to an odd number of } wavelengths, has also been treated." The antenna
is center-fed, and the current distribution is assumed to be sinusoidal (see
Fig. 5-7). The self-resistance for this case is
R, = 30[(1 — cot’ %é) Cin 28L + 4 cot’ B—; Cin 8L

8L . .
+ 2 cot ) (8i 28L — 281 BL) ohms (10-62)

When the length L is small, (10-62) reduces very nearly to
R, = 5(8L)* ohms (10-63)

For the special case of L = nh/2, wheren = 1,3, 5. . ., (10-62) reduces

to the relation given previously by (10-55).
The above discussion of this section applies to balanced center-fed
antennas. For a thin linear stub an-

T tenna of height I perpendicular to an

“T infinite, perfectly conducting ground

1=_;‘ plane as in PFig. 10-7a, the self-

Ground impedance is one-half that for the
plone\ ! 1 corresponding balanced type (Fig.

L 10-7b). The general formula (10-62)
(a) for self-resistance can be converted
for a stub antenna above a ground
b plane by changing the factor 30 to 15
(®) and making the substitution L = 2I,
__¥__ The formulas (10-55) and (10-56)
F1g. 10-7. Stub antenna of length lat (&) can be converted for a stub antenna
and center-fed antenna of length L at (b).  with ground plane where the an-

tenna is an odd number n of 1 wave-
lengths long by changing the factor 30 to 15. Thus, for a }-wavelength an-
tenna perpendicular to an infinite perfectly conducting ground plane, the
self-impedance is

Z,, = 36.5 + j21 ohms

10-4. Mutual Impedance of Two Parallel Linear Antennas. The mufual
tmpedance of two coupled circuits is defined in circuit-theory as the
negative of the ratio of the emf V,;, induced in circuit 2 to the current I,
flowing in circuit 1 with circuit 2 open. Consider for example the coupled

1G. H. Brown and R. King, High Frequency Models in Antenna Investigations,
Proc. I.R.E., 22, 457-480, April, 1934.

J. Labus, Recherische Ermittlung der Impedanz von Antennen, Hochfrequenztechnik
und Electroakustik, 17, January, 1933.
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circuit of Fig. 10-8 consisting of the primary and secondary coils of a
transformer. The mutual impedance Z,, is then

Vo
I,
where V,, is the emf induced across the terminals of the open-circuited
secondary by the current I, in the primary. The mutual impedance, so
defined, is not the same as a transfer impedance —_—
such as discussed in connection with the reci- T
procity theorem in Sec. 10-2. In general, a

transfer impedance is the ratio of an emf im-

pressed in one circuit to the resulting current in

another with all circuits closed. For example, Pri. Sec.
if the generator in Fig. 8 is removed from the Fis. 10-8. Coupled cireuit
primary and is connected to the secondary or transformer.

terminals, the ratio of the emf V applied by this

generator to the current [, in the closed primary circuit is a transfer im-
pedance Z,. Thus

VZI

vy

I,
This impedance is not the same as the mutual impedance Z,, given in
(10-64).

=2Zr (10-65)

Instead of the coupled circuit of Fig. 10-8,
‘ ; let us consider now the case of two coupled an-
tennas 1 and 2 as shown in Fig. 10-9. Suppose
a current I, in antenna 1 induces an emf V,,
TEFE" TEz=sz at the open terminals of antenna 2. Then the
ratio of —V,, to I, is the mutual impedance

Zy,. Thus,

~ 1 Vo . —
/Q: ? Ty = ’7& (10-66)
1

If the generator is moved to the terminals
of antenna 2, then by reciprocity the mutual
| 2 impedance Z,, or ratio of —V,, to I, is the
Fic. 109, Paralld coupled same as before, \‘vhere V., is the emf induced
antennas. at the open terminals of antenna 1 by the cur-
rent [, in antenna 2. Thus,

- -V
_IT’=Z21=Z12=_‘I“Z‘L2

To calculate the mutual impedance, we need to know V,, and I,. Let
the antennas be in the z direction as shown in Fig. 10-9. The emf ~V

Va (10-67)

11
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induced in an antenna by its own current is indicated by (10-16). To
obtain the emf V,, induced at the open terminals of antenna 2 by the
current in antenna 1, we set E, = E,,, Vy; = —V,, and I; = I, in (10-16).
Then,

L
Va = jl';f LE, dz (10-68)
)

where I, is the maximum current and I, the value at a distance z from
the lower end of antenna 2 with its terminals closed, and where E,; is
the electric field along antenna 2 produced by the current in antenna 1.
Assuming that this current distribution is sinusoidal as given by

I, = I, sin Bz (10-69)
8o that (10-68) becomes
L
Ve = [ Eusinpede (10-70)
V]
then
— Vz; - ]. & .
Loy = =~ E, sin Bz dz (10-71)
I, I Jy

This is the general expression for the mutual impedance of two thin
linear, parallel, center-fed antennas with sinusoidal current distribution.
We will consider first the situation where both antennas are the same
length L, where L is an odd number of 3 wavelengths long (L = nA/2;
n =135 ...). A case of particular interest is where both antennas
are 3 wavelength long (n = 1). The relative positions of the antennas
may be divided into three situations: side by side, collinear or end to end,
and staggered or in echelon. These arrangements are illustrated in Fig,

I Il

L

| | L

M7
L] l

Side-by-side
l y

Collinear Stoggered or in echefon

‘a) (b) (c)

Fig. 10-10. Three arrangements of two parallel antennas.

h
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10-10. Mutual-impedance expressions for the three arrangements are given
in the following sections.

10-6. Mutual Impedance of Paraliel Antennas Side by Side." Let d be
separation of the antennas. Referring to the arrangement of Fig. 10-10a
and Fig. 10-11, the field E,, along antenna 2

produced by the current I, in antenna 1 is P4
given by (10-38) where

no= V& 42 (10-72) :
and P

ry = Vd + (L —2)° (10-73)

L
Substituting this into (10-71), the mutual , 4
impedance becomes
—:a\/m ’
Zy = 730 / l: fe—d=p —_PI
\/dz + z Ant/e(nnul A:l\enno 2
oIV a (L2 Fie. 10-11. Parallel coupled

+ \/m:l sin Bz dz (10-74)  antennas with dimensions.

Carter has shown that upon integration of (10-74)
Zy = 30{2 Ei (—jpd) — Ei [—j8(v/d* + I’ + L)]
— Ei [—8(V/ @ + L — L))} ohms (10-75)
where the exponential integral
Ei (£jy) = Ci(y) =7 8i (v (10-76)
Thus, the mutual resistance is,
By = 30{2 Ci (8d) ~ Ci [B(v/d" + I’ 4 L)]
—Ci[B(v/@+ L~ L)]}  ohms (10-77)
and the mutual reactance is

Xo = —30{28i (8d) — 8i [B(Vd" + L* + L)]

—Si[B(\d + L — L))}  ohms (10-78)
where

Rzl +jX21 =Jo =2y = R, +an (10—79)

'A number of mutual-impedance charts are presented by F. E. Terman, ‘“Radio
Engineers’ Handbook,” McGraw-Hill Book Company, Inc., New York, 1943, Scc. 11,
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The mutual resistance and reactance calculated by (10-77) and (10-78)
for the case of j-wavelength antennas (L = A\/2) are presented by the

80 -
70 Rai ) Looo
N 5"
60 \ ] IJ I\I ——__.B-=||7ooo
50 - ¢ L 4 2 L.
. -.‘ d ..........-__73
40 \ . —L °
30 :\\ :
"\
20 P —t—A——+——1— <
ol \ ’Zz,. \/\\
) X 7 N | R A
£ ol A K _A N X2 ]
6 NG NV B NLNA LR
- .\ & 1]
° ‘.'}\ /. /gm X
-20 -‘) /\-\.:‘/g
-30 ks '\\ iy
~40 \‘\—"/
3% 0.2\ 0.4\ 06N 08A 1.OA  t2\ 1.4\ 16X 8\ 2.0\

Distance d between antennas

Fie. 10-12. Curves of mutual resistance (R3;) and reactance (X 1) of two parallel side-
by-side linear 3-wavelength antennas as a function of distance between them. Solid
curves are for infinitesimally thin antennas as calculated from Carter’s formulas.
Dashed and dotted curves between 0 and 1.0 \ spacing are from Tai’s data for antennas
with L/D ratios of 11,000 and 73 respectively.

solid curves in Fig. 10-12 as a function of the spacing d. The mutual re-
sistance R,, is also listed in Table 10-1.

An integral-equation method for the calculation of the mutual im-
pedance of linear antennas has been presented by King and Harrison®
and by Tai® The method is related to that discussed in Chap. 9. In
this method the diameter of the antenna conductor is a factor. By way
of comparison, curves for the mutual resistance and reactance given by
Tai are also shown in Fig. 10-12. The dashed curves are for a total length-
to-diameter ratio (/D) of 11,000 (very thin antenna) and the dotted
curves for a ratio of 73.

In Table 10-1 the quantity B, — R, which is important in array
calculations, is also tabulated. When d is small, it has been shown by
Brown® that this quantity is given approximately by the simple relation

1R. King and C. W. Harrison, Jr., “Mutual and Self Imnpedance for Coupled Antennas,”
J. Applied Phys., 16, 481-495, June, 1944.

1C. T. Tai, Coupled Antennas, Proc. I.R.E., 86, 487-500, April, 1948,
3G. H. Brown, private communication to the author, June 16, 1938,
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d\* d\’
Rll - R21 == 607I'2<X> = 592.2(;) Ohms (10‘80)

where A = the free-space wavelength

This relation is accurate to within 1 per cent when d < 0.05 A and to

within about 5 per cent when d < 0.1 A,

TABLE 10-1

MUTUAL RESISTANCE V8. SPACING FOR THIN CENTER-FED SIDE-BY-
SIDE 3-WAVELENGTH ANTENNAS (8L = 180°%), WITH SINUSOIDAL
CURRENT DISTRIBUTION

—-

Mutual Self minus
Spacing d resistance mutual resistance
sz, ohms (Ru —_ Rz[), ohms
0.00 73.13 0.00
0.01 73.07 0.06
Q.05 71.65 1.48
0.10 67.5 5.63
0.125 64.4 8.7
0.15 60.6 12.5
0.20 51.6 21.5
0.25 40.9 32.2
0.3 29.4 43.7
0.4 + 6.3 66.8
0.5 -12.7 85.8
0.6 —23.4 96.5
0.7 —24.8 97.9
0.8 —18.6 91.7
0.9 - 7.2 80.3
1.0 + 3.8 69.3
1.1 +12.1 61.0
1.2 +15.8 57.3
1.3 +12 .4 60.7
1.4 -+ 5.8 67.3
1.5 — 2.4 75.5
1.6 — 8.3 81.4
1.7 —10.7 83.8
1.8 —~- 9.4 82.5
1.9 - 4.8 77.9
2.0 ! + 1.1 72.0

In the more general situation where the antenna length L is not re-
stricted to an odd number of 1 wavelengths, the mutual resistance and
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reactance are given by Brown and King' as

Rzl == 30 {2(2 + CcOS BL) Ci Bd

1
sin® (8L/2)
s L[l (VIFFT - D+ GEWIFTE 4+ 1)
+ cos BLICi BV & + IF — L) + Ci (/@ + I + L))

+ sin BL[Si B(NE + L+ L) —Sip(\/& + L* — L)

— 28i g (Vadr + L+ L) + 2Sig(\/4d2 + L~ L)]} ohms (10-81)
and

+ 4 cos? % [Sig(\/m ~ D +8il (VAT + L):l

— 2 cos BLISI B(V/& + L — L) + Si (/& + L7 + D)]

+ sin BL[Ci BVE+ L+ L) - Cip(v/d + L* - I)
—ZCig(\/m-i—L)+20ig(\/m—L)]}ohms (10-82)

In the special case of L = n)\/2,

L — where 7 is odd, (10-81) and (10-82)
reduce to the relations given previously
d 1 by (10-77) and (10-78).
The above relations of this section
apply to balanced center-fed antennas.
N\ Ground plane The mutual impedance of two stub an-
Fic. 10-13. Two coupled linear par- tennas of height [ = L/2 above an in-
allel stub antennas. finite, perfectly conducting ground

plane as in Fig. 10-13 is one-half that
given by (10-77) and (10-78) or (10-81) and (10-82). These relations are
converted to the ground-plane case by changing the factor 30 to 15 and
making the substitution L = 21,

1G. H. Brown and R. King, High Frequency Models in Antenna Investigations,
Proc. I.R.E., 22, 457-480, April, 1934.

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



Sec. 10-7] SELF AND MUTUAL IMPEDANCES 269

10-6. Mutual Impedance of Parallel Collinear Antennas. Let each
antenna be an odd number of % wavelengths long and arranged as in
Fig. 10-10b. For the case where & is greater than L, Carter' gives the
mutual resistance and reactance as

Ry = —15 cos ﬂhl:—Z Ci 28h 4+ Ci 28(h — )

+Ciggth + L) — ln<-}i—%2~—Lj>:]
4+ 15s8in ph[2 81 28h — Si 28(h — L) — Si28(h 4 L)] ohms (10-83)
and
X; = —15 cos Bh{28i 28k — 8i 28(h — L) — 8i 28(h + L)]
415 sin Bhl:2 Ci2ph — Ci28(h — L)

— Ci 28 + I) — 1n<h——h‘-2—-’i>] ohms (10-84)

Curves for R, and X, of parallel collinear i-wavelength antennas
(I, = A/2) are presented in Fig. 10-14 as a function of the spacing s where
s = h — L (see Fig. 10-10b).

30 —
R
20 \Zl f“%.—’fé’i“%"‘[
\ —r—
£ ol
< 10
s "IN 1
X \ X2 Rt X
o 21 ///IQ — L 21
\\ /)é.//ﬁ’tl/ 1)‘(21 Rai
i
‘IOO 0.2\ 0.4\ 0.6) 0.80 1.OX 1.2\ L4x L6\ LB 20X
Spacing S

Fre. 10-14. Curves of mutual resistance (Rx) and reactance (X,1) of two parallel
collinear infinitesimally thin }-wavelength antennas as a function of the spacing s
between adjacent ends.

10-7. Mutual Impedance of Parallel Antennas in Echelon. For this
case the antennas are staggered or in echelon as in Fig. 10-10¢. Each

*P. 8. Carter, Circuit Relations in Radiating Systems and Applications to Antenna
Problems, Proc. I.R.E., 20, 1004-1041, June, 1932.
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antenna is an odd number of 1 wavelengths long. The mutual resistance
and reactance of two such antennas are given by Carter' as

Ry = —15cosph(—2Ci A — 2Ci A’
+CiB+CiB +CiC 4 CiC)
+15sin BR{(2Si A — 281 4’
—SiB+Si1B—-8SiC+8i(C) ohms (10-85)
and
Xoi = —15 cos Bh(2S8i 4 + 2Si A’
—SiB-SiB —8iC —-S8i)
+15sin Bh(2Ci A — 2Ci A’
—CiB4+CiB"—-CiC+ Ci(C) ohms (10-86)
—3— vwhere A = B(\/d’+ K + h)
AT = (VT + 1 =}
3 B =g[vd+ (h = L)’ + (h = L)]
" =BV + (b= L) — (h - L)]
4 C =8[vVE&+h+ L+ &+ L)

¢ =BVd+ h+ L)' — (h+ L)
l N Values of the mutual resistance in ohms as

calculated from (10-85) are listed in Table 10-2*
as a function of d and h for the case where the
antennas are § wavelength long (I, = 7\/2) as
I‘IG. 10-15. Two parallel ln(,ill,ilated n F%g. 10-15. .
linear i-wavelongth antennas e staggered or ecnelon arrangement is
in echelon. , the more general situation of which the side-

by-side position (Sec. 10-5) and the collinear
position (Sec. 10-6) are special cases.

10-8. Mutual Impedance of Other Configurations. There are many
other antenna configurations for which the mutual impedance may be of
interest. The variety is enormous, but two will be mentioned and refer-
ences given which the reader may consult for further information.

1. Parallel Antennas of Unequal Height. This case has been treated by
Cox.®* His data apply specifically to stub antennas perpendicular to an
infinite, perfectly conducting ground, but can be used with symmetrical

T

1 Carter, op. cil.

2 All but a few values are from a table by A. A. Pistolkors, The Radiation Resistance
of Beam Antennas, Proc. I.R.E., 17, 562-579, March, 1929.

#C. R. Cox, Mutual Impedance Between Vertical Antennas of Unequal Heights,
Proc. I.R.E., 35, 1367-1370, November, 1947.
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TABLE 10-2

MUTUAL RESISTANCE AS A FUNCTION OF d AND & (FIG. 10-15) FOk
THIN 3-WAVELENGTH ANTENNAS IN ECHELON

Spacing k
Spacing d

0.0 0.5 1.0 1.5 2.0 2.5\ 3.0
0.0 +73.1 +26.4 —4.1 +1.8 -1.0 +0.6 —0.4
0.5 —-12.7 —11.8 —-0.8 +0.8 -1.0 +0.5 —0.3
1.0 +3.8 +8.8 +3.6 -2.9 +1.1 —0.4 +0.1
1.5 —2.4 -5.8 -6.3 +2.0 +0.6 -1.0 40.9
2.0 +1.1 +3.8 +6.1 +0.2 —2.6 +1.6 —0.5
2.5 —-0.8 -2.8 5.7 —2.4 +2.7 —0.3 -0.1
3.0 +0.4 +1.9 +4.5 +3.2 —-2.1 —1.6 +1.7
3.5 —0.3 —1.5 -3.9 -3.8 +0.7 +2.7 —-1.0
4.0 +0.2 +1.1 +3.1 +3.7 +0.5 —-2.5 -0.1
4.5\ —-0.2 —-0.9 —-2.5 —3.4 —1.3 +2.0 +1.1
5.0\ +0.2 +0.7 +2.1 +3.1 +1.8 —1.4 —-1.9
5.5\ —0.1 —-0.6 —1.8 —-2.9 —2.2 +0.5 +1.8
6.0 +0.1 +0.5 +1.6 +2.6 +2.3 -0.1 —2.0
6.5 —0.1 —-0.5 —-1.2 —-2.3 -2.3 -0.5 +1.7
7.0 +0.1 +0.4 +1.1 +2.1 +2.3 40.9 -1.3
7.5 0.0 —0.3 —-1.0 —-1.9 —2.1 —1.0 +0.7

center-fed antennas of twice the length by multiplying the resistance and
reactance values by two.

2. V or skew antennas. Some antenna systems involve nonparallel linear
radiators. The mutual impedance of such inclined antennas has been
discussed by a number of writers,' but very few numerical data are
available.

10-9. Comparison of Self-impedance Formulas. It is interesting to
compare the formulas for self-resistance and reactance of thin linear
center-fed antennas derived in this chapter with those for thin center-fed
biconical antennas discussed in Chap. 8 for the case where the antennas
are an odd number n of 1 wavelengths long. This is done in Table 10-3.
A case of particular interest is for antennas § wavelength long (n = 1),

1P. 8. Carter, Circuit Relations in Radiating Systems and Applications to Antenna
Problems, Proc. I.R.E., 20, 1004-1041, June, 1932.

F. H. Murray, Mutual Impedance of Two Skew Antenna Wires, Proc. I.R.E., 21,
154-158, January, 1933.

F. B. Pidduck, ‘“Currents in Aerials and High-frequency Networks,” Oxford Uni-
versity Press, New York, 1946, p. 21.
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TABLE 10-3
Case Self-resistance Ry, Self-reactance X,
Thin [Antenna odd no. n 30 Cin (2mn) 30 Si (27n)
linear |3 wavelengths long
antenna
(Car- 1-wavelength an-
ter) | fenna (n = 1) 73.13 42.5

60 Cin (nm) — 30[0.577|60 Si (nw) + 30 Si (2nm)
Thin Antenna odd no. n

bicon- £ wavelengths long + I %r — 2 Ci (nm)
ical an-

tenna + Ci 2nm)}
(Schel-

kunoff) 3-wavelength an-

73.3 153.6

tenna (n = 1)

and the values for this case are also tabulated. The self-resistances are in
close agreement for the two antennas, but the self-reactance of the thin
hiconical antenna is nearly four times as much as for the thin linear antenna.

10-10. A Discussion of the Methods Used for Calculating Antenna Im-
pedances. In this and preceding chapters a number of methods for calcu-
lating the impedance of antennas of finite length have been discussed. In
this section, a brief summary and comparison of these methods is pre-
gented.”

The methods may be classified into three principal types: (1) the
boundary-value problem approach, (2) the transmission-line method, and
(3) the Poynting vector method.

1. The Boundary-value Problem Approach. This method might be con-
sidered as the most basic approach. The fundamental field equations are
expressed in terms of a coordinate system most appropriate to the antenna
shape. A solution of this equation is then obtained which satisfies the
boundary condition, usually that the tangential component of the electric
field vanishes at the conductor surface. From this the current distribution
is determined and the input impedance then obtained as the ratio of the
applied terminal emf to the current at the terminals. No assumption is
made as to the current distribution; it is determined by the solution.

The principal disadvantage of the method is that antenna shapes to

1 A discussion is given by R. E. Burgess, Aerial Characteristics, Wireless Engr., 21,
154-160, April, 1944.
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which it can be applied exactly are limited. In fact, the spheroidal
antenna is the only shape which yields to an exact analysis. In this case,
spheroidal coordinates are used and the antenna surface made to corre-
spond 1o a fixed value of one coordinate. The free oscillations of a prolate
spheroid (football shape, see Fig. 9-15) have been studied by Abraham.'
Forced oscillations, as produced by a transmission line connected at the
center, have been treated by Stratton and Chu® and by Page and Adams.?
A good discussion of the general subject is given by Aharoni.*

Antennas are rarely made spheroidal in shape so that the results are
not directly applicable to most practical types of antennas. An exception
to this is the limiting case of a long, thin spheroidal antenna which may
be considered as approximating a long, thin eylindrical conductor.

A direct attack on the cylindrical antenna as a boundary-value problem
has been formulated by Hallén who obtained an integral equation in the
antenna current /. This method is discussed in Chap. 9. The solution
of this equation is a formidable problem. Approximate solutions have
been obtained yielding the current distribution. The terminal impedance
is found by taking the ratio of the emf applied at the antenna terminals
to the terminal current. Results are most reliable for thin antennas.
Both the resistive and reactive components of the self-impedance are
obtained. Recently this method has been extended to finding the mutual
impedance between antennas.

In Hallén’s treatment the effect of the end cap on the cylindrical con-
ductor is neglected by assuming that the antenna length is much greater
than the diameter. Provided that the inside diameter of the hollow
cylindrical conductor is sufficiently small that it cannot transmit a guided
wave,’ the difference in effect of an open or closed end is not large since
the current flowing around an open end and into the interior of the hollow
conductor vanishes in a short distance. The effect of neglecting the end
caps is certainly no larger than that of changing the length of the antenna
by an amount equal to the conductor diameter.

2. The Transmission-line Method. In this method, the antenna is
treated as a terminated transmission line. This approach lends itself
most appropriately to the biconical antenna with its uniform characteristic

! M. Abraham, Die electrischen Schwingungen um einen stabformingen Leiter,
behandelt nach der Maxwellschen Theorie, Ann. Physik, 66, 435-472, 1898.

2 J. A. Stratton and .. J. Chu, Steady State Oscillations of Electromagnetic Field
Problems, J. Applied Phys., 12, 230-248, March, 1941.

3L. Page and N. L. Adams, The Electrical Oscillations of a Prolate Spheroid, Phys.
Rey., 63, 819-831, 1938.

4J. Aharoni, “Antennae,” Oxford University Press, New York, 1946, pp. 62-86.

8 The inside diameter would need to be at least 0.58 A in order to transmit a guided
wave (TE,, mode) inside the antenna conductor even if this mode were to be excited.
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impedance. This method has been used by Schelkunoff’ and is discussed
in Chap. 8. The equivalent terminating impedance of a biconical antenna
has been calculated by him for thin cones with an assumed sinusoidal cur-
rent distribution. The classification of this approach as a “transmission-
line method” is arbitrary. It may also be called a boundary-value method
since the solution is subject to the boundary conditions that the tangential
E along the cones is zero and that the fields at the boundary sphere are
continuous.

3. The Poynting Vector Method. The general approach in this method
is to integrate the Poynting vector over a surface enclosing the antenna or
to perform an equivalent calculation. Two limiting cases of this method
have been discussed: (a) where the surface of integration coincides with the
surface of the antenna and (b) where the surface of integration is a sphere
at a large distance from the antenna.

a. Integration over antenna surface. 'This is the so-called emf method
employed by Carter, Pistolkors, Bechmann, and others and discussed in
previous sections of this chapter. The terminal voltage V,; required to
produce a terminal current I, in an infinitesimally thin antenna is shown

to be
5L
Vo= —[ E.singed (10-87a)
0
The terminal impedance is then
L
Zy =40 = —2 [ B sin g de (10-87b)
Il Il i)
as in (10-18). The complex power supplied to the antenna is
W =3V, (10-88a)

where V1, is given by (10-87a) and I¥ is the complex conjugate of I,.

The power W in (10-88a) should also be given by the integral of the
normal component of the total complex Poynting vector over the antenna
surface. Thus,

~ %ff (E X H) - ds (10-88%)

Assuming that the antenna is in the z direction, the element of surface

ds = dl dz, wwhere dl is a segment of arc on a circle enclosing the antenna as
in Fig. 10-16. Hence, (10-88b) can be expressed

W =3 [[ B.hz (10-89a)

18, A. Schelkunoff, ““Electromagnetic Waves,” D. Van Nostrand Company, Inc.,
New York, 1943,

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



Sec. 10-101 SELF AND MUTUAL IMPEDANCES 275

Since E,, is not a function of ¢, and recalling that the line integral ¢ H} dl
equals the current IF in the wire (Ampetre’s law), (10-89a) becomes

W= [Bara waits (10-89%)

Both E,, and I'* are functions of z. Let it be assumed that I'¥ is a sinusoidal
function of 2, that is, I¥ = IF sin 8z, where IT is the maximum or terminal
current. Then

L
W= %I‘f f ., sin pz dz (10-90)

Actually the perfectly conducting metal parts of an antenna can neither
absorb nor radiate power but only guide it so that the only contribution
to (10-88b) would come from the gap at the center of the antenna. Thus,
if the terminals are at a current maximum, (10-90) reduces to

Wil | E.d (10-91a)
where the gap or terminal voltage is equal to the line integral of the total
field across the gap. Now W is also given by the integral of the complex
Poynting vector of the induced field over the antenna or

1 L
- —~I{‘f B, sin 8z de
2 a

Hence,

L
[ Bude=- [ Bsinpa=v, (000
gap 0 r<—Conductor
and the terminal voltage V), is the same whether
calculated by the emf method, by the integration
of the total Poynting vector over the antenna (con-
tribution only from the gap) or by the integration

E;
of the Poynting vector of the induced field over

Gl — ()

|—d2z
the antenna (contribution from the antenna con-
ductor). The terminal impedance Z,, is the ratio g di >
of W to % the square of the absolute value of the ~——"1H¢

terminal current I,, or Fre. 10-16. Antenna

conductor and surface
oW VoIV,

=27 _ — Ju ¥ element.
Zu =T P~ ~ g, 099

b. Infegration over large sphere. In this method the normal component
of the Poynting vector is integrated over the surface of a large sphere
enclosing the antenna. The power flowing through this sphere is all
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radiated power, the reactive power being confined to regions near the
antenna. Hence, this method yields only the real or resistive component
of the antenna impedance.

Examples of this method are given in Chap. 5 in the calculation of the
radiation resistance of a thin linear antenna and also in Chap. 6 in finding
the radiation resistance of thin loops. In this method a current distribu-
tion is assumed, and the radiated field pattern of this distribution is
calculated. The average Poynting vector P, at any point of the far field is
given by

P, = H*Z,  watts/meter’ (10-92)

where H is the rms magnetic-field intensity and Z, is the intringic im-
pedance of the medium (= 377 ohms for free space). Integrating P,
over a large sphere yields the power W radiated. The
terminal radiation resistance £ is then given by the ratio
of the power W to the rms terminal current I squared. Thus,

2
R=Y _ Z—%ﬁ-d—s (10-93)

=*T2'._

o ——1—

D (

The accuracy of this method depends on how closely the
assumed current distribution corresponds to the actual
distribution. In the case of linear antennas a sinusoidal
distribution is assumed. This is a good approximation if
|J___y the antenna is thin and yields quite accurate values of
Fre. 10-17. Cy- resistance provided that the terminals are at or near a
lindrical center- current maximum.
fed antenna. 10-11. Simple Empirical Method. A very simple em-

pirical method for calculating the approximate self-imped-
ance of cylindrical center-fed antennas is outlined in this section.

The terminal resistance at first and third resonances is relatively inde-
pendent of the ratio L/D of antenna length to diameter (Fig. 10-17).
Hence, let us arbitrarily take the following values (see Fig. 9-12):

T___T

Resonance Resistance, ohms Antenna length, L
First, Reo oo vovevvonn 67 L = 0.48 A\
Third, Bs...cocooovi 0 95 L = 1.44 A\
where
L/D |
A = 77 10-94
@/D) + 1 {10-54)
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Let the geometric mean of the resistances at an odd resonance and at the
next higher even resonance be called the natural resistance R, to distinguish
it from the characteristic resistance. Then assuming R, to be constant,
the resistance at the second and fourth resonances is given by

R, _R. _
R, = R - 67 (L = 0.964)) (10-95)
and
R, R, _
R, = E = 05 (L = 1.924\) (10-96)

where the natural resistance is given by the empirical relation
R, = 150 log,, % ohms (10-97;

where L is the total length and D the diameter of the antenna.
Thig gives four values which can be entered on an impedance diagram.
An approximate impedance spiral for the antenna can then be sketched

200 I
L=07) ')
/—.\’L{O.E At R,, L =0.435\
100 STy N
) At R,, L =0.87)
2 ' \§’
£ o Rz 1At Ry, L=131A
€ T
. I -
', y L=09) At Ry, L =175\
!
-100 ) v i‘ L Vi
1 1.0 I:“%___l
!
) 0
3
-200
2004 100 200 300 400

R in ohms
Fig, 10-18. Impedance spiral for cylindrical antenna with length-to-diameter ratio
(L/D) of 10 as constructed from empirical formula.

and lengths between resonances estimated as indicated in the example of
Iig. 10-18. This example is for the case of L/D = 10.

Yor cylindrical stub antennas mounted on large ground planes as in
Tig. 10-19, the first and third resonant resistances are as follows:

Resonance Resistance, ohms ’ Antenna length, !
First, Ry, ............ 34 1 =024 4"
Third, Rs............. 48 1 =072 4
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where

,_
S+

where [ is the length of the stub antenna and r is the radius. The second
and fourth resonant resistances are then

p - G (R

A (10-98)

(1 = 0.484")) (10-99)

2r > < - R, 34
1 and
_®y _@®)y ,
R, = R = a8 (I =0.964"\) (10-100)

where the natural resistance for stub antennas
is given by

Fre. 10-19. Cylindrical stub R =75 logml ohms  (10-101)
antenna. T

PROBLEMS

10-1. Calculate the self-resistance and self-reactance of a thin, symmetrical
center-fed linear antenna § wavelengths long.

10-2. Calculate the mutual resistance and mutual reactance for two parallel
side-by-side thin linear 3-wave antennas with a separation of 0.15 wavelength.

10-3. Calculate the mutual resistance and reactance of two parallel thin linear
1.wavelength antennas in echelon for the case where d = 025X and b = 1.25 A
(see Fig. 10-15).

10-4. Prove Brown’s relation Ri; — R = 60w%(d/N)? given in (10-80).

10-6. Three antennas are arranged as shown. The currents are of the same mag-
nitude in all antennas. The currents are in phase in (a) and (¢), but the current in

a b c

(b) is in antiphase. The self-resistance of each antenna is 100 ohms, while the mu-
tual resistances are: R,, = R,, = 40 ohms and R,, = —10 ohms. What 15 the
radiation resistance of each of the antennas? The resistances are referred to the
terminals, which are in the same location in all antennas,
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CHAPTER 11

ARRAYS OF LINEAR ANTENNAS

11-1. Introduction. In discussing arrays of linear antennas a number of
topics treated in previous chapters form an essential background. These
topics are: arrays of point sources (Chap. 4), linear antennas (Chap. 5),
and impedances of linear antennas (Chap. 10). It is assumed that the
reader is already familiar with these subjects.

In this chapter arrays of thin linear antennas are analyzed in some detail.
The far- or radiation-field pattern, the driving-point impedance, and the
gain in field intensity are determined in that order for several different
types of arrays. The method of analysis is general and can be applied to
other arrays, the specific types discussed serving merely as examples. The
simplest type of array will be considered first. This is an array of two
driven 1-wavelength elements. The term “element’ is taken to mean the
basic unit antenna of which the array is constructed. It is assumed in this
chapter that the elements are thin and linear.

11-2. Array of Two Driven }-wavelength Elements. Broadside Case.
Consider two center-fed 2-wavelength elements arranged side by side with
a spacing d as in Fig. 11-1. Two special cases will be considered: the broad-
side case’ treated in this section in which the two elements are fed with
equal in-phase currents, and the end-fire case® (Sec. 11-3) in which the two
elements are fed with equal currents in opposite phase. The more general
case where the currents are equal in magnitude but in any phase relation is
treated in Sec. 11-4.

11-2a. Field Patterns. The first part of the analysis will be to determine
the absolute far-field patterns. It is convenient to obtain two pattern
expressions, one for the horizontal plane and one for the vertical plane.
Ordinarily, the relative patterns would be sufficient. However, the abso-
lute patterns will be needed in gain calculations. ILet the elements be

1 In the so-called “broadside case’ there is always a major lobe of radiation broadside
to the array, although at large spacings there may be an end-fire lobe of equal magnitude
(as for example when the spacing is 1 wavelength).

?In the so-called “end-fire case” the pattern always has zero radiation broadside.
The maximum radiation is always end fire if the spacing is § wavelength or less. How-
ever, for greater spacings the maximum radiation is, in general, not end fire. Since
spacings of 3 wavelength or less arc of principal interest, the array may be referred to as
an end-fire type.

279
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280 ANTENNAS [Caap. 11

vertical as shown in Fig. 11-2a. It is assumed that the array is in free space,
that is, at an infinite distance from the ground or other objects. The field
intensity E,(¢) from a single element as a function of ¢ and at a large
distance D (D >> d) in a horizontal plane (6 = 90°
or z-y plane in Fig. 11-2a) is

e Ei(¢) = kI, (11-1)

where k is a constant involving the distance D, and
I, is the terminal current. Iquation (11-1) is the
{ absolute field pattern in the horizontal plane. It
is independent of ¢ so that the relative pattern is a
circle as indicated in Fig. 11-25.

\ 1 Next let the elements be replaced by isotropic
point sources of equal amplitude. The pattern
E.,..(¢) as a function of ¢ in the horizontal plane
2 for two such isotropic in-phase point sources is
given by (4-6) as

np>-

S S

Fic. 11-1. Broadside ar-

1

ray of two in-phase }-
wavelength elements. E;,. (¢) = 2E, cos (szﬂ)) (11-2)
where d, = the distance between sources expressed in radians
That is,
i, = 2 oLy

Applying the principle of pattern multiplication, we may consider that E,
is the field intensity from a single element at a distance D. Thus,

E, = E\(¢) = kI, (11-4)

Introducing (11-4) into (11-2) yields the field intensity E(¢) as a funetion of
¢ In the horizontal plane at a large distance D from the array, or

E(g) = B#) 2 cos (f‘l—'%ls—i’) — 2K1, cos (‘igﬂﬂ (11-5)
This expression may be called the absolute field pattern in the horizontal
plane. The electric field at points in this plane is everywhere vertically
polarized. The shape of this pattern is illustrated in Fig. 11-2¢, and also
partially in Fig. 11-2q, for the case where d = A/2. The maximum field
intensity is at ¢ = 90° or broadside to the array.

The field intensity £,(6) as a function of § from a single 3-wavelength
element at a distance D in the vertical plane (y-z plane in Fig. 11-2a) is
from (5-81) given by
cos [(x/2) cos 6]

sin

E\(6) = kI, {11-6)
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The shape of this pattern is shown in Fig. 11-2d. It is independent of the
angle . The pattern £,,,.(8) in the vertical plane for two isotropic sources
in place of the two elements is

Ei-o.(a) = 2E0 (11'70)
Applying the principle of pattern multiplication, we put
E, = Ey(6) (11-7b)

so that the field intensity E(6) in the vertical plane at a distance D from
the array is

cos [(r/2) cos 6]
sin 8

E(6) = 21, (11-8)

¥4
/ 1 elemenf\ g /E @
K Y U\/ '
¢ (d)
b
() 2
X o
W(ﬂ 2 elemen?s\ E ()

Y O Y
Eg <. () (e)
X

F1a. 11-2. Patterns for broadside array of two linear in-phase -wavelength elements
with spacing d of § wavelength.
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This may be called the absolute field pattern in the vertical plane. This
pattern has the same shape as the pattern for a single element in the vertical
plane and is independent of the spac-
ing. The relative pattern is pre-
sented in Fig. 11-2e and also partially
in Fig. 11-2a. The relative three-

, L \I\VL/ I, dimensional field vax:iation for tl'le
3w v case where d = A/2 is suggested in
Fig. 11-2a. This pattern is actually
briving” bi-directional, only one-half being
point for shown.
array

11-2b. Driving-point Impedance.
Suppose that the array is energized
by the transmission-line arrange-
ment shown in Fig. 11-3. Two
F1a. 11-3.  Broadside array of two linear transmission lines of equal leI'lgth L
J-wavelength elements with arrange- join at P to a third line extending to
ment for driving elements with equal & transmitter. ILet us find the driv-
in-phase currents. ing-point impedance presented to
the third line at the point P.' This
will be called the driving point for the array.
Let V, be the emf applied at the terminals of element 1. Then,

V1 = Ille + Izzu (11'9)

where I, is the current in element 1, I, the current in element 2, 7, is the
self-impedance of element 1, and Z,, is the mutual impedance between the

two elements. Likewise, if V, is the emf applied at the terminals of
element 2

1

To transmitter

Ve = 12Z22 + Ilzu (11‘10)

where Z,, = the self-impedance of element 2
The currents are equal and in phase so

I =1, (11-11)
Therefore, (11-9) and (11-10) become
Vi=1{Z + Z.») (11-12)
and
Vo= 1(Zs + Z) (11-13)
The terminal impedance Z, of element 1 is
Z, = % =Zn + Zn (11-14)
1

1G. H. Brown, A Critical Study of the Characteristics of Broadcast Antennas as
Affected by Antenna Current Distribution, Proc. I.R.E., 24, 48-81, January, 1936.
G. H. Brown, Directional Antennas, Proc. I.R.E., 25, 78-145, January, 1937.
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and the terminal impedance Z, for element 2 is

Yo o 7+ 7 (11-15)

Z, = T,

Since the elements are identical
Zyy = Zin (11-16)
Therefore, the terminal impedances given by (11-14) and (11-15) are

equal. That is,
Z1 = Zz = Z11 + Zu (11-17)

Since Z, = Z, and I, = I, it is necessary that the emf V. applied at the
terminals of element 1 be equal and in phase with respect to the emf V,
applied at the terminals of element 2.

For the case where the spacing d is 3-wavelength, the terminal im-
pedance Z, of each element is

Zl = Zu + sz =R, + Ry +.7(X11 + Xlz)
73 — 13 + j(43 — 29)
= 60 + ;714 ohms (11-18)

i

Suppose that the reactance of 14 ohms is tuned out at the terminals by a
series capacitance.' The terminal impedance then becomes a pure re-
sistance of 60 ohms. If the length I of each transmission line between the
antenna terminals and P is 2 wavelength, the driving-point impedance of
the array at P is a pure resistance of 30 ohms. This value is independent
of the characteristic impedance of the 3-wavelength lines. However, a
resistance of 30 ohms is too low to be matched readily by an open-wire
transmission line. Therefore, a more practical arrangement would be to
make I equal to 1 wavelength. Suppose that we wish to have a driving-
point resistance of 600 ohms. To do this, we let the characteristic im-
pedance of each I-wavelength line be /1,200 X 60 = 269 ohms.> Each
line transforms the 60 ohms to 1,200 ohms, and since two such lines are
connected in parallel at P, the driving-point impedance for the array is a
pure resistance of 600 ohms. This is the impedance presented to the line to
the transmitter. For an impedance match this line should have a char-
acteristic impedance of 600 ohms.

11-2¢c. Gain in Field Intensity. As the last part of the analysis of the

1Tt is often simpler to resonate the elements by shortening them slightly. This modi-
fies the resistive component of the impedance and also alters the E(#) ficld pattern, but to
a first approximation these effects can usually be neglected.

? For the special case of a {-wavelength line, the general transmission-line formula,
(see Appendix) reduces to Z;,, = Z%/Z, where Z;, is the input impedance, Z, the char-
acteristic impedance, and Zj, the load impedance. Thus, Zy = +/Zwdr.
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array, let us determine the gain in field intensity for the array. This
could be done by pattern integration as in Chap. 2, but with self- and
mutual-impedance values available a shorter method is as follows.

Let the total power input (real power) to the array be W.* Assuming no
heat losses, the power W, in element 1 is

W, = If(Ru + R12) (11-19)
the power W, in element 2 is
Wz = I;<R22 + Rm) (11-20)

where I, and I, are rms currents.
But R,, = Ry; and I, = I,. Making these substitutions and adding
(11-19) and (11-20) to obtain the total power W, we have

W = W1 + Wg = 2[21’(Ru + R;g) (11—21)

~ 7
L= \o@ TR (11-22)

Suppose that we express the gain with respect to a single 1-wavelength
element as the reference antenna. Iet the same power W be supplied to
this antenna. Then assuming no heat losses, the current [, at its terminals

is
- f___”
I, = R (11-23)

where R, is the self-resistance of the reference antenna.

In general, the gain in field intensityt of an array over a reference antenna
is given by the ratio of the field intensity from the array to the field
intensity from the reference antenna when both are supplied with the
same power W. The comparison is, of course, made in the same direction
from both the array and the reference antenna. In the present case it
will be convenient to obtain two gain expressions, one for the horizontal
plane and the other for the vertical plane.

and

* Tt is important that the antenna power W be considered constant. Most trans-
mitters are essentially constant power devices which can be coupled to a wide range of
antenna impedance. Until the antenna power was considered constant by G. H.
Brown (Proc. I.R.E., January, 1937) the advantages of closely spaced elements were
not apparent. Prior to this time the antenna current had usually been considered
constant.

t The power gain discussed in Chap. 2 is equal to the square of the gain in field inten-
sity. The power gain is the ratio of the radiation intensities (power per unit solid angle)
for the array and reference antennas, the radiation intensity being proportional to the
square of the field intensity.
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In the horizontal plane the field intensity Eu.w.(¢), as a function of ¢,
at a distance D from a single vertical center-fed 3-wavelength reference
antenna, is of the form of (11-1). Thus,

Ea.w.(¢) = kI, (11-24)

where I, is the terminal current and “H.W.” indicates ‘“Half-Wavelength
antenna.” Substituting the value of I, from (11-23), we obtain

Eqw.(0) = k\/l—;‘wf; (11-25)

The field intensity E(¢) in the horizontal plane at a distance D from the
array is given by (11-5). Introducing the value of the terminal current
I, from (11-22) into (11-5) yields

_ 2w d, cos qS) ~ ‘
E(p) = k4 ’Ru TR, cos( 5 (11-26)

The ratio of (11-26) to (11-25) gives the gain in field intensity of the
array (as a function of ¢ in the horizontal plane) with respect to a vertical
L-wavelength reference antenna with the same power input. This gain will
be designated by the symbol G/(¢)[A./H.W.] where the expression in the
brackets is by way of explanation that the gain is that of the Array (A.)
with respect to a Half-Wavelength reference antenna (H.-W.)' in the same
direction from both array and reference antenna. Thus,

G’(‘#)[H{XW.] - Eon® ~ \NEn 47 § cos(25522) I (11-20)

The absolute value bars || are introduced so that the gain will be confined
to positive values (or zero) regardless of the values of d, and ¢. A negative
gain would merely indicate a phase difference between the fields of the
array and the reference antenna.

If the gain is the ratio of the maximum field of the array to the maximum
field of the reference antenna it is designated by G, (see Sec. 2-15).

The self-resistances Boy = R,; = 73 ohms. For the case where the spac-
ing is § wavelength, d, = = and R;; = —13 ohm so that (11-27) becomes

G,(qs)liifw—.] = 1.56 cos (g cos ¢> (11-28)

1 Both the array and the }-wavelength reference antenna are assumed to be in free
space. Thus, to be more explicit the expression G,(¢)[A.F.S./H.W.F.8.}, meaning
the gain in field intensity of the Array in Free Space (A.F.8.) with respect to a Half-
Wavelength reference antenna in Free Space (H.W.F.8.), might be used. However, to
simplify the notation, the letters “F.S.”” will be omitted when both antennas are in free
space.
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In the broadside direction (¢ = #/2), the pattern factor becomes unity.
The gain is then 1.56. This is the ratio of the maximum field of the array
to the maximum field of the reference antenna (see Fig. 11-4). Hence,
G, = 1.56. :

It is also of interest to find the angle ¢, for which the gain is unity.
For this condition (11-28) becomes

cos <’—25 cos ¢0) = 0.64 (11-29)

or
¢o = £56° or &+ 124°
These angles are shown in Fig. 11-4. The array has a gain of greater than
unity in both broadside directions over an angle of 68°.
¢ =180°
Half-wave reference
anténna

P=-lea =124

Array

=-90° @=90°

@=-56"

¢

X
p=o*
Fic. 11-4. Horizontal plane pattern of broadside array of two vertical in-phase %-
wavelength clements spaced } wavelength. The pattern of a single vertical }-wave-
length reference antenna with the same power input is shown for comparison.

The gain as a decibel ratio is given by the relation
Gain = 20 log,, G, db

where G, = the gain in field intensity
Thus, a field-intensity gain of 1.56 is equal to 3.86 db.

Turning our attention now to the gain in the vertical plane (y-z plane
of Fig. 11-2a), the field intensity Ey. vw.(8) as a function of 6 in this vertical
plane at a distance D from a single vertical 3-wavelength reference antenna
with the same power input is of the form of (11-6). Thus,

cos [(x/2) cos 6]

EH.W.(O) = kI, sin 6

(11-30)

where I, = the terminal current
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Substituting its value from (11-23), we get

W cos [(w/2) cos 6]

EHW<B) = k ROO Sin [}

(11-31)
The field intensity E(8) as a function of 8 in the vertical plane at & distance
D from the array is given by (11-8). Introducing the value of the terminal
current [, from (11-22) into (11-8), we have :

. 2W  cos [(r/2) cos 8]
E(p) = k\/;l iy T (11-32)

The ratic of (11-32) to (11-31) gives the gain in field intensity,
G (O[A./H.W.], of the array as a function of ¢ in the vertical plane over

a vertical i-wavelength reference antenna with the same power input.
Thus,

Al EBO [ 2R,
G’“”[H.WJ = B (0) \/Ru T Ea (11-33)

The gain is a constant, being independent of the angle 8. For the case
where the spacing is 4 wavelength, (11-33) becomes
A, . 11l ,
G,(B)[W:I = 1.56 (or 3.86 db) (11-34)
The shape of the pattern for the array and for the j-wavelength reference
antenna is the same as shown in Fig, 11-5, but the ratio of the radius vec-
tors in the same direction is a constant equal to 1.36.

Z
g Half-wave reference
antenna

Array

Y

Antenno
elements

Fig. 11-5. Vertical-plane pattern of broadside array of two vertical in-phase i-wave-
length elements spaced § wavelength. The pattern of a single vertical i-wuvelength
reference antenna with the same power input is shown for conmparison.

If the reference antenna is an isotropic source instead of a i-wavelength

antenna, the gain in the vertical plane is a function of the angle 6. The
maximum gain in field intensity of the array over an isotropic source with
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the same power input is +/ 1.64 times greater than the voltage gain over
a l-wavelength reference antenna. Thus, when the spacing is 3 wave-
length, the maximum gain in field intensity of the array with respect to an
isotropic source is

G,l:i‘:—o'] = 1.56 X +/1.64 = 2.0 (or 6.0 db)

This value is in the broadside direction (¢ = 6 = 90°).

11-3. Array of Two Driven j-wavelength Elements. End-fire Case.
Consider an array of two center-fed vertical j-wavelength elements in free
space arranged side by side with a spacing 4 and
equal currents in opposite phase as in Fig. 11-6.
The only difference between this case and the one
discussed in Sec. 11-2 is that the currents in the ele-
ments are taken to be in the opposite phase instead
of in the same phase. As in Sec. 11-2, the analysis
will be divided into 3 subsections on the field pat-
! terns, driving-point impedance, and gain in field
intensity.

i 11-3a. Field Paiterns. The field intensity E,(¢)
as a function of ¢ at a distance D in a horizontal
plane (z-y or ¢ plane in Fig. 11-7a) from a single
X element is

. 11-6. End-fire ar- _
11'25 ()f1 }c\fo }-wavelength E\(¢) = I,
elements with currents

of equal magnitude but
opposite phase.

>

where k¥ = a constant invelving the distance D
I, = the terminal current

Replacing the elements by isotropic point sources
of equal amplitude, the pattern E,,,.(¢) in the horizontal plane for two such
isotropic out-of-phase sources is given by (4-10) as

Iy (¢) = 2E, sin <d——%§i’) (11-35)

Applying the principle of pattern multiplication, we may consider that
E, is the field intensity from a single element at a large distance D, Thus

E, = E\(¢) = kI, (11-36)

and the field intensity E(¢) as a function of ¢ in the horizontal plane at
a large distance D from the array is

E(¢) = 2kI,sin (5&%)5—?) (11-37)
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This is the absolute field pattern in the horizontal plane. The electric
field at points in this plane is everywhere vertically polarized. The
relative pattern for the case where the spacing d is 3 wavelength is shown
in Fig. 11-7b and also partially in Fig. 11-7a. The maximum field in-

Y
(@) §
E
8 E(0)
Elements
AR X |
|
Elements
Y
(b) (e

Fra. 11-7. Patterns for end-fire array of two linear out-of-phase 3-wavelength elements
with spacing d of { wavclength.

tensity is at ¢ = 0° and ¢ = 180°. Hence, the array is commonly referred
to as an “end-fire”” type.

The field intensity E,(6) as a function of # from a single i-wavelength
element at a distance D in the vertical plane (z-z plane in Fig. 11-7a) is
from (5-81) given by
cos [(w/2) cos 4]

£,(6) = kI, sin 4

(11-38)
The pattern E;,..(6) as a function of 4 in the vertical plane for two isotropic
sources in place of the two elements is from (4-10)

d, sin 0)
2

E,...(8) = 2E,sin ( (11-39)

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



290 ANTENNAS [Cuar. 11

Note that 6 is complementary to ¢ in (4-10), so cos ¢ = sin 6. Putting

L, = E\(6) the field intensity E(#) as a function of 6 in the vertical plane
at a large distance D from the array is

E(6) = 2kI, %2 [(:i/ 2) 05 8] i (d' i ") (11-40)

This is the absolute field pattern in the vertical plane. The relative
pattern is illustrated in Fig. 11-7¢, and also partially in Fig. 11-7q, for the
case where the spacing is 3 wavelength. The relative three-dimensional
field variation for this case (d = N\/2) is suggested in Fig. 11-7a. This
pattern is actually bidirectional, only one-half being shown.

11-3b. Driving-point Impedance. Let V, be the emf applied to the
terminals of element 1. Then

Vi = LZ, + LZ, (11-4:1)
Likewise, if V, is the emf applied to the terminals of element 2

Vz = Izzzz + IIZ12 (11"42)
The currents are equal in magnitude but opposite in phase so
Therefore, (11-41) and (11-42) become

V, = Il(le - le) (1144)
and

Vy, = [,(Zy, — Z13) (11-45)
The terminal impedance Z, of element 1 is

V,
Zy =5 =Fy — Zy (11-46)

1

and the terminal impedance Z, of element 2 is

Z, = JI’E = Zzz - le (11-47)
2
Therefore,
Zy = Zy = Zy — Zn (11-48)
or
V. _ Y
=T (11-49)

Since I, = —1I, it follows from (11-49) that ¥V, = —V,. This means that
the two elements must be energized with emfs which are equal in magni-
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tude and opposite in phase. This may be done by means of a crossover
in the transmission line from the driving point P to one of the elements as
shown in Fig. 11-8. The length [ of each line is the same.

For the case where the spacing between elements is 3 wavelength, the
terminal impedance of each element is

Z1 = Ru - Rw ‘l“ j(‘Yu - Xu)
= 86 + 572 ohms (11-50)

Consider that the reactance of 72
ohms is tuned out by a series capaci-
tance at the terminals of each element.

The terminal impedance is then a Driving
. o point for
pure resistance of 86 ohms. To ob- array

tain a driving-point resistance of 600
ohms, let the length [ of the line from
P to each element be i wavelength
and let the line impedance be
\/1;200 X 86 = 322 ohms. Foran Tig. 11-8. End-fire array of two lincar
impedance match, the line from the i-wavelength elements with arrange-
driving point P to the transmitter ment for drivi.ng elements \\'it.h currents
should have a characteristic imped- of equal magnitude but opposite phase.
ance of 600 ohms.

11-3¢c. Gain in Field Iniensity. Using the same method as in Sec. 11-2¢,
the current I, in each element for a power input W to the array is given by

f w
I, = 2R — Rn) (11-51)

It is assumed that there are no heat losses. The current I, in a single
i-wavelength reference antenna is given by (11-23). The gain in field
intensity G,(¢)[A./H.W.] as a function of ¢ in the horizontal plane with
respect to a i-wavelength reference antenna is obtained by substituting
(11-51) in (11-37) and taking the ratio of this result to (11-25). This yields

2
For a spacing of 3 wavelength (11-52) reduces to

To transmitter

A, .
G,(qb)[m:l = 1.3 | sin [(x/2) cos 4] | (11-53)
In the end-fire directions (¢ = 0° and 180°) the pattern factor becomes

unity, and the gain is 1.3 or 2.3 db. This is the gain G, (see Fig. 11-9)
The gain in field intensity G,(6)[A./JH.W. as a function of 8 in the
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vertical plane (z-z plane of Fig. 11-7a) with respect to a 1-wavelength
reference antenna is found by substituting (11-51) in (11-40) and taking the
ratio of this result to (11-31) obtaining

G/(O)[—ﬁ%ﬁ:l = ‘}Rfﬁ(ﬂ}em in (d' Szin 0) I (11-54)

which is of the same form as the gain expression (11-52) for the horizontal
plane (note that maximum radiation is in a direction § = 90° ¢ = 0°).

The gain in field intensity G, of the array over an isotropic source with
the same power input is 1.3 X +/1.64 = 1.66 (or 4.4 db).

Half-wove
reference
antenna

Half-wave
reference
aontenna

Elements

Elements

Y (a)

(%)

Fig. 11-9. Horizontal plane pattern (a) and vertical plane pattern (b) of end-fire
array of two vertical 3-wavelength elements with }-wavelength spacing. The patterns
of a vertical i-wavelength reference antenna with the same power input are shown for
comparison.

11-4. Array of Two Driven -wavelength Elements. General Case with
Equal Currents of Any Phase Relation.! In the preceding sections two
special cases of an array of two }-wavelength driven elements have been
treated. In one case the currents in the elements are in phase (phase
difference = 0°), and in the other the currents are in opposite phase (phase
difference = 180°), In this section the more general case is considered
where the phase difference may have any value. As in the preceding
cases the two I-wavelength elements are arranged side by side with a
spacing d and are driven with currents of equal magnitude.

Tor the general phase case the radiation-field pattern in the horizontal
plane (z-y plane of Fig. 11-7a) is from (4-20) given by

E() = 2KI, cos—g (11-55)

1For a more detailed discussion of this case and also of the most general case where the
surrent amplitudes are unequal, see G. . Brown, Directional Antennas, Proc. I.R.E.,
26, 78-145, January, 1937.
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where ¢ is the total phase difference between the fields from element 1 and
clement 2 at a large distance in the direction ¢ (see Fig. 11-10). Thus,

¥ =d,cos¢ + § (11-56)

where & = the phase difference of the
currents in the elements

A positive sign in (11-56) indicates
that the current in element 2 of Fig.
11-10 is advanced in phase by an

Element |
/Element 2

angle § with respect to the current in #=0
element 1. That is ; d !
IL=1)s Fieg. 11-10. Array of two side-by-side
- 1 ts n 1 to pl of X
or L =1 /6 (11-57) elements normal to plane of page
The voltages applied at each element are
Vi=1Z,+ LZ, = Il(le + Zy ﬁ) (11-58)
and
Vz = Izzzz + Ixzm = I'Z(Z‘ZZ + Z:'z /’_6) (11‘59)
The driving-point impedances of the elements are then
o= = 2+ 2 L0 11-60)
1
and
Ve
Zz = I_ = 222 + le /—6 (11-61}
2
The real part of the driving~-point resistances are
R] = R]l + ]le 1 cos (T + 5) (11-62)
and
R2 = R22 + IZIZ l CcOs (T hamd 6) (11‘63)

where r = the phase angle of the mutual impedance Z,, (that is,
7 = arctan X]z/R]z Where Z]g = R12 + jX]z)
Therefore, the power W, in element 1 is

Wo=|L|’?R, = |1, *R), + | Z1, | cos (v + 8)] (11-64)

and the power W, in element 2 is
Wy = |I, "Ry + | Z1s | cos (r — )] (11-65)

Since B\, = Ry, the total power W is
W=W,+W,=|L|*{2R,y + | Z1; | [cos (+ + &) + cos (r — 8]}
2|1, >Ry + | Z,, | cos 7 cos §)
2|1, | R + Ry cos d) (11-66)

I
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It follows that the gain in field intensity as a function of ¢ in the hori-
zontal plane' of the array over a single 1-wavelength element with the same
power input is

A [T 2R, \ <d cos¢+a>
GM{HWJ— R Ry cos 6| °® 2

A polar plot of (11-67) with respect to the azimuth angle ¢ gives the radia-
tion-field pattern of the array in the horizontal plane, the ratio of the

S —>
9 O" | 35° 180°

~0-0-0-@c
>) (D‘Q

(11-67)

@,

¢

©

|
"
¢

N

d=1X

I

Elements
&_

bhe—d—sf L
Fig. 11-11. Horizontal-plane field patterns of two vertical elements as a function
of the phase difference & and spacing d. (After G. H. Brown.) Both clements are the
same length and have currents of equal magnitude. The circles indicate the field in-
tensity of a single reference element of the same length with the same power input.

1 This is the plane of the page in Fig. 11-10.
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magnitude of the radius vector to a unit radius indicating the gain over a
reference i-wavelength antenna. Brown' has calculated such patterns as a
function of phase difference & and spacing d,. Examples of these are
shown in Fig. 11-11.

The radiation-field pattern in the vertical plane containing the elements
(in the plane of the page of Fig. 11-12) is

d, sin 6 + 5) cos [(m/2) cos 4]
2 sin 6

Thus, the pattern in the vertical plane has the shape of the patterns of
Fig. 11-11 multiplied by the pattern of a single }-wavelength antenna. The
gain in the vertical plane over a vertical 1-wavelength reference antenna
with the same power input is then

A 2R,
0] i5) = N+

It is often convenient to refer the gain to
an isotropic source with the same power in-
put. Since the gain of a }-wavelength an-
tenna over an isotropic source is 1.64, the 4
gainin field intensity as a function of 6 in the
vertical plane of a vertical 3-wavelength an-
tenna in free space over an isotropic source is

e

E(8) = 21, cos< (11-68)

o (d, sin20 + 5) 1 (11-69

6=0

180.
= 4/1.64

The gain in field intensity in the vertical
plane of the array over the isotropic source
is then the product of (11-69) and (11-70) or

cos [(xr/2) cos 6]
T sng l (11-70)

Nerements”"

Fra. 11-12. Relation of polar an-
gle ¢ in the plane of the elements,

Elements

Al A H.W.
60| s ] = 60| sy ] < o0 3
B 3.28R,, ‘ (d, sin 6 + a) cos [(x/2) cos 6]
" NRy + Rz cos 81 ¢os 2 sin @ (11-71)

11-6. Closely Spaced Elements and Radiating Efficiency.” The end-fire
array of two side-by-side, out-of-phase {-wavelength elements discussed in
Sec. 11-3 produces substantial gains even when the spacing is decreased

1 G. H. Brown, Directional Antennas, Proc. I.R.E., 26, 78-145, January, 1937.

2J. D. Kraus, Antenna Arrays with Closely Spaced Elements, Proc. I.R.E., 28
76-84, February, 1940.

J. D. Kraus, The Corner Reflector Antenna, Proc. I.R.E., 28, 513-519, November.
1940.
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to small values. As indicated by the R, = 0 curve in the gain-vs.-spacing
graph of Fig. 11-13q, the gain approaches 3.9 db at small spacings. At
1 wavelength spacing the gain is 2.3 db. This curve is calculated from
(11-52) for ¢ = 0° or (11-54) for § = 90°. As the spacing d approaches

W
AN
o
“

R8s | 7 ==
A Re=20—T |

/

=i d -
-2 [ i |
o] 0. 0.2 03 0.4 0.5
Spacing d in wavelengths
(a)
87 18 Gon (R=0) 1o
74 1a4rp Coupling /2R,
foctor, = R—,, 'R_;z 8
6 - ter
=
554810k s 8
S = Pattern d ~ 8
2 =sin{$L cos 2
4 ; st foctor ! (2 ¢) -
£ 2 S
% 34 ¢ 6 1435
© < &
248 a4t
.2
I 2r
- 0 1 1 i i
° [¢) 0.1 0.2 0.3 0.4 0.5
Spocing d sn wovelengths
()

F1c. 11-13. (a) Gain of end-fire array of two out-of-phase {-wavelength elements (flat-
top beam antenna) with respect to a j-wavelength reference antenna as a function of
the spacing for five values of the loss resistance Rz. (b) Gain curve for B, = 0 with
variation of its component factors, the coupling factor and the pattern factor, for
¢ =0

zero, the coupling factor becomes infinite, but at the same time the pattern
factor approaches zero. The product of the two or gain stays finite,
leveling off at a value of about 3.9 db for small spacings as illustrated by
Tig. 11-13b. The fact that increased gain is associated with small spacings
makes this arrangement attractive for many applications. End-fire arrays
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of this type with a spacing between elements of 1 wavelength or less may
be called “flat-top beam’’ antennas,’ since the array is commonly operated
with both elements horizontal as illustrated in Fig. 11-14, and in this
position it resembles in appearance a top-loaded or flat-top antenna.

Thus far it has been assumed that
there are no heat losses in the antenna
system. In many antennas such losses

Maximum Maximum
are small and can be neglected. ra di;ﬁr radioTion
However, in the flat-top antenna such
losses may have considerable effect
on the gain. Therefore, the question /_

of losses and of radiating efficiency
will be treated in this section in con-
nection with a discussion of arrays of
two closely spaced, out-of-phase ele-
ments. The term “closely-spaced” Fre. 11-14. Flat-top beam antenna
will be taken to mean that the ele- with closely spaced elements carrying
ments are spaced 4+ wavelength orless. equal out-of-phase currents.
A transmitting antenna is a device

for radiating radio-frequency power. Let the radiating efficiency be defined
as the ratio of the power radiated to the power input of the antenna. The
real power delivered to the antenna that is not radiated is dissipated in the
loss resistance and appears chiefly in the form of heat in the antenna con-
ductor, in the insulators supporting the antenna, etc. An antenna with a
total terminal resistance R, may be considered to have a terminal resis-
tance R,, which is all radiation resistance, and an equivalent terminal loss
resistance R, such that

Bir = R, + Ry. (11-72)
It follows that,

Radiating efficiency, 9 = X 100 . (11-73)

R, + Ri.

Since many types of high-frequency antennas have radiation resistances
that are large compared to any loss resistance, the efficiencies are high.
In an array with closely spaced, out-of-phase elements, however, the
radiation resistance may be relatively small and the antenna current very
large as illustrated by Fig. 11-15. Hence, a considerable reduction in
radiating efficiency may result from the presence of any loss resistance.
The radiating efficiency may also be small for low-frequency antennas
which are very short compared to the wavelength. Although the effect of
loss resistance will be discussed specifically for an array of two closely

3J. D. Kraus, Antenna Arrays with Closely Spaced Elements, Proc. I.R.E., 28,
76-84, February, 1040,
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spaced 3-wavelength elements, the method is general and may be applied
to any type of antenna.

Let the equivalent loss resistance at the terminals of each element be
R:.. The elements are center-fed and are arranged side by side with a

25 100
T d
20 v Ago
é 5 / 60 E
b A :
I~ o

40

A
)5

0o 0l 0.2 0.3 0.4 0.50
Spacing d in wavelengths

w

0

F1a. 11-15. Current I, and radiation resistance R, in each element of a flat-top beam
antenna as a function of the spacing. The current is calculated for a constant input
power of 100 watts to the array.

spacing d. The total terminal resistance R, is as given by (11-72). The
terminal radiation resistance R, is given by

R: = R, — Ry, (]1—74)
Substituting (11-74) in (11-72) the total terminal resistance for each
element is then

Rir = Ry + R — Rus (11—75)
If a power W is supplied to the two-element array, the current I; in each
element is
w
L=y _
' N2, + Rus — Ruy) (11-76)

The total terminal resistance R,r of a single, center-fed }-wavelength
reference antenna is

Ryr = Ryo + Roz (11-77)
where Ry, is the self-resistance and R, the loss resistance of the reference

antenna
The current [, at the terminals of the reference antenna is then

I, = Az (1178
° = R + Boz -78)
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With the array elements vertical, the gain in field intensity as a function
of ¢ in the horizontal plane (z-y plane in Fig. 11-7a) is obtained by sub-
stituting (11-76) in (11-37), (11-78) in (11-24) and taking the ratio which

gives
Gf(d’)[ A :l —- 2(Rcm +‘ ROL) n (dr cgs 4’) l (11_79)

HW. B Ru + RxL - Ru
This expression reduces to (11-52) if the loss resistances are zero
(ROL = RIL = 0)
In a similar way the gain in field intensity as a function of 8 in the
vertical plane (x-z plane in Fig. 11-7a) is

A — 2(Ron + Roy1)
G’(”’[H.WJ = \NEn + R — s

This reduces to (11-54) if the loss resistances are zero.

The effect of loss resistance on the gain of a closely spaced array of
two out-of-phase 3-wavelength elements over a 3-wavelength reference
antenna is illustrated by the curves in Fig. 11-13a. The gain presented is
actually the maximum gain which occurs in the directions of maximum
radiation from the array (¢ = 0° and 180°% 6 = 90°). The top curve,
which was mentioned earlier, is for zero loss resistance (B = Ry = 0).
The lower curves are for four different values of assumed loss resistance:
3,1, 5, and 20 ohms. The assumption is made that the loss resistance
R,;, of each element of the array is the same as the loss resistance R, of
the reference 3-wavelength antenna (that is B,, = R,.). It is apparent
from the curves that a loss resistance of only 1 ohm seriously limits the
gain at spacings of less than % wavelength, and larger loss resistances
cause reductions in gain at considerably greater spacings. If the loss
resistance is taken to be 1 ohm (a not unlikely value for a typical high-
frequency antenna), the gain is almost constant (within 0.1 db) for spacings
between & and i wavelength. Smaller spacings result in reduced gain
because of decreased efficiency while larger spacings also give reduced
gain, not because of decreased efficiency, but because of the decrease in
the coupling factor. A spacing of § wavelength has the advantage that the
physical size of the antenna is less. However, resonance is sharper for this
spacing than for wider spacings. Hence, a spacing of 1 wavelength is to
be preferred if a wide band width is desired. In some situations an inter-
mediate or compromise spacing is indicated.

The @ of an antenna, like the @ of any resonant circuit, is proportional
to the ratio of the energy stored to the energy lost (in heat or radiation)
per cycle. For a constant power input to the closely spaced array the
@ is nearly proportional to the square of the current I in each element. Refer~
ring to Fig. 11-15, 1t is apparent that the current for § wavelength spacing

<d' S;n 0) I - (11-80)

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



300 ANTENNAS [Crar. 11

is about twice the value for } wavelength spacing. Hence the @ for 1

wavelength spacing is about four times the @ for 1 wavelength spacing.
A large @ indicates a large amount of stored energy near the antenna
in proportion to the energy radiated per e¢ycle. This also means that the
antenna acts like a sharply tuned circuit. Since the band width (f it is
narrow) is inversely proportional to the @, a spacing of { wavelength
provides about four times the band width obtained with § wavelength
spacing. Although the efficiency of an array with closely spaced, out-of-
phase elements might be increased, for example, by using a large diameter
conductor for each element, any substantial increase in band width re-
quires an increase in the spacing between the elements. This increase
also raises the radiating efficiency.

The flat-top beam or closely spaced antenna array discussed above in
this section consists of two side-by-side, out-of-phase 3-wavelength ele-
ments as indicated in Fig. 11-14 and in Fig. 11-16a. Five other examples
of flat-top beam antennas are shown in Fig. 11-16 with arrows located at

= i (a)

‘ L._ (a) ) S
—%— —%—
1 1 (®) STV Nt

T

A s Y T ) i
Terminals

\Termincls ( ¢) ( f)

(-3

Center-fed types End-fed types
Fia. 11-16. Six types of flat-top beam antennas,

current maxima indicating the instantaneous current directions. The type
at Fig. 11-16b has an additional collinear }-wavelength section, the two
sections being energized from the center. A four section center-fed array
is illustrated in Fig. 11-16¢c. The additional sections yield a higher gain
by virtue of the sharper beam in the plane of the elements. The antennas
of Figs. 11-16d, ¢, and f are end-fed types corresponding to the center-fed
arrays in the left-hand group. The spacing d is usually between % and %
wavelength.

11-6. Array of n Driven Elements. The field pattern of an array of
many elements can often be obtained by an application of the principle
of pattern multiplication. As an example, consider the volume array of
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Fig. 11-17 consisting of sixteen 3-wavelength elements with equal currents.
In the y direction the spacing between elements is d, in the z direction
the spacing is ¢, and in the 2z direction the spacing is h. Let the y direction
array and z direction arrays be broadside types and the z direction array
an end-fire type such that the maximum radiation of the entire volume
array is in the positive z direction. Letd = h = A/2and ¢ = A/4. Con-
sider that the currents in all elements are equal in magnitude and that
the currents in the front eight elements are in phase but retarded by 90°
with respect to the currents in the rear eight elements. By the principle
z

9 Ig/ I 12
2 3 4
/

il leuj

h
—L \ 14 15 |/ 16 Y
8

6 7

5
¢
Maximum
radiation

X
F1e. 11-17. Array of 16 }-wavelength elements.

of pattern multiplication the pattern of the array is given by the pattern
of a single element multiplied by the pattern of a volume array of point
sources, where the point sources have the same space distribution as the
elements. In general, the field pattern E(9, ¢) of a volume array as a
function of § and ¢ is

E(9,¢) = E.(6, 9) £.(6, $) E,(6, ¢) E.(6, ¢) (11-81)
pattern of single element

E_.(8, ) = pattern of linear array of point sources in z direction

E, (9, ¢) = pattern of linear array of point sources in y direction

E.(0, $) = pattern of linear array of point sources in z direction
The product of the last three terms in (11-81) is the pattern of a volume
array of point sources [see Eq. (4-77)]. If, for instance, we wish to obtain
the pattern of the entire array E(¢) as a function of ¢ in the z-y plane
(6 = 90°), we introduce the appropriate pattern expression in this plane

where E, (8, ¢)

I
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for each component array in (11-81). TFor the example being considered
the normalized pattern becomes

E(¢) = 48111:11—%(2?*7;11831) 41 cos [7—; (I — cos ¢)] (11-82)

Only the E,(¢) broadside pattern and the E,(¢) end-fire pattern contribute
to the array pattern in the a-y plane, since in this plane the ,(¢) pattern
of a single element and the E.(¢) broadside pattern are unity.

The impedance relations for an array of any number n of identical
elements ave derived by an extension of the analysis used in the special
cases in the preceding sections." Thus, for n driven elements we have

Vi = LZu + LZy + L + - + Lz, |
V, = IIZZI + 1,72, + Iazza + -+ IﬂZZn
Vs = IIZ.'}I + I2Z32 + I:aZsa + .- + InZ3n (11-83)

V., = Ilzm + Izan + I3, + oo+ 1Z.s
where V, = terminal voltage of the nth element
I, = terminal current of the nth element
Z,, = mutual impedance between element 1 and the nth element
2., = self-impedance of the nth element
The driving-point or terminal impedance of one of the elements, say
element 1, is then

N L s Y A
Zim P =Znt PLot P lat o+ P e (118

i

If the currents in the elements and the self and mutual impedances are
known, the driving-point impedance Z, can be evaluated.

The voltage gain of an array of n elements over a single element can be
determined in the same manner as outlined for the special cases considered
in the previous sections. For instance, the gain in field intensity as a
function of ¢ in the z-y plane (8§ = 90°) for the array of Fig. 11-17 with
respect to a single vertical j-wavelength element with the same power
input is

A.
G’(¢)[H.W.]
T R, + Ry,

“NRu+ R+ R+ Ris+Ris + 3Rz + Rio) + 3(Bos + Ris)
o
'% cos [Z (1 - cos¢):] (11-85)

18ee for example, P. 8. Carter, Circuit Relations in Radiating Systems and Applica-
tions to Antenns Problems, Proc. I1.R.E., 20, 1007, June, 1932.
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where R,, = self-resistance of one element

R,;, = loss resistance of one element

R,, = mutual resistance between element 1 and element 2

R,; = mutual resistance between element 1 and element 3, ete.
The numbering of the elements is as indicated in Fig. 11-17. 1t is assumed
that d = h = A/2 and ¢ = A/4 and that the current magnitudes are equal,
the currents in the front eight elements being all in the same phase but
retarded 90° with respect to the currents in the rear eight elements.

11-7. Horizontal Antennas Above a Plane Ground. In the previous dis-
cussions it has been assumed that the antenna or array is in free space,
that is, infinitely remote from the ground. Although the fields near
elevated microwave antennas may closely approximate this idealized
situation, the fields of most antennas are affected by the presence of the

ground. The change in the pattern
h
|

from its free-space shape is of pri-
7

mary importance. The mmpedance
relations may also be different than
h
b e
B —

/Anienno

when the array is in free space, espe-
cially if the array is very close to the
ground. In this section the effect of
the ground on horizontal antennas is
discussed. In Sec. 11-8 the effect of
the ground is analyzed for vertical

y Ground

I/

antennas. A number of special cases
are treated in each section, these be-
ing limited to single elements or to

Fia. 11-18. j-wavclength antenna at
height A above ground with image at equal
distance below ground,

simple arrays of several elements.

11-7a. Horizonial 3-wavelength Antenna Above Ground. Consider the
horizontal 3-wavelength antenna shown in Fig. 11-18 at a height : above
a plane ground of infinite extent. Owing to the presence of the ground,
the field at a distant point P is the resultant of a direct wave and a wave
reflected from the ground as in Fig. 11-19. Assuming that the ground is
perfectly conducting, the tangential component of the electric field must
vanish at its surface. To fulfill this boundary condition, the reflected
wave must suffer a phase reversal of 180° at the point of reflection.

To obtain the field at a distant point P, it is convenient to transform
the problem by the “method of images.”” In this method the ground is
replaced by an image of the antenna situated a distance h below the
ground plane. By taking the current in the image equal in magnitude
but reversed in phase by 180° with respect to the antenna current, the
condition of zero tangential electric field is met at all points along a plane
everywhere equidistant from the antenna and the image. This is the

plane of the ground which the image replaces. In this way, the problem
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of a horizontal antenna above a perfectly conducting ground' of infinite
extent can be transformed into the problem already treated in Sec. 11-3
of a so-called end-fire array. One point of difference is that in developing
the gain expression it is assumed that if a power W is delivered to the
antenna, an equal power is also supplied to the image. Hence, a total
power 2W is furnished to the “end-fire array” consisting of the antenna
and its image.

Owing to the presence of the ground, the driving-point impedance of the

To distant
point P

Antenna

(Element 1) Reflected
wave
Ground
7 77 T 00000
h ,’/
//
image -
(Element 2)

F16. 11-19. Antenna above ground with image showing direct and reflected waves.

antenns is, in general, different than its free-space value. Thus, the ap-
plied voltage at the antenna terminals is

Vl = Ilzll + Izz... (11-86a)
where I, = the antenna current

I, = the image current
Z,, = the self-impedance of the antenna

Z, = the mutual impedance of the antenna and its image at a
distance of 2h
Since I, = —I,, the driving- or feed-point impedance of the antenna is
Z, = % — 7, — 7. (11-86b)
1
The real part of (11-86b) or driving-point radiation resistance is
R, =R, — R, (11-86¢)

The variation of this resistance at the center of the 3-wavelength antenna
is shown in Fig. 11-20 as a function of the antenna height 4 above the

1Tt is also possible to apply the method of images to the case of a ground of infinite
oxtent but of finite conductivity ¢ and of dielectric constant e by properly adjusting the
relative magnitude and phase of the iinage current with respect to the antenna current.

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



Sec. 1i-7] ARRAYS OF LINEAR ANTENNAS 305

ground. As the height becomes very large, the effect of the image on the
resistance decreases, the radiation resistance approaching its free-space
value.

Since the antenna and image have currents of equal magnitude but
opposite phase, there is zero radiation in the horizontal plane, that is, in
the direction for which the elevation angle « is zero (see Fig. 11-19). If the
height 4 is 1 wavelength or less, the maximum radiation is always in the
vertical direction (@ = 90°). For larger heights the maximum radiation
is, in general, at some elevation angle between 0° and 90°.

It is convenient to compare the horizontal 3-wavelength antenna at a

100

90 / \
80 \ //\\
70 17

/Resistancg at
60 / NG infinite height —

R, in ohms
o
=}
\

0O 0.1 02 03 04 05 06 07 08 09 [0
Height above ground in wavelengths

F16. 11-20. Driving- or feed-point resistance R; at the center of a horizontal i-wave-
length antenna as a function of its height above a perfectly conducting ground.

height A above ground with respect to a 3-wavelength antenna in free space
with the same power input. At a large distance the gain in field intensity
of the “Half-Wavelength antenna Above Ground” (H.W.A.G.) with re-
spect to the “Half-Wavelength antenna in Free Space” (H.W.F.S.) is
given by

H W. A G Rn + RIL 3 .
Gl )[H W s} \/Ru iy — |2sin (h, sin )|  (11-87)

where h, = (2x/\)h
R,; = self-resistance of i-wavelength antenna
R,; = loss resistance of 3-wavelength antenna
R, = mutual resistance of j-wavelength antenna and its image at a
distance of 2h

I
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Horizontal i igal
half-wave antenna
h
4 Ground
7 L 2
2 2
1 1
Half-wave
antenna in
free space
h=0.1A =0.25\
30°
20°
10° /
2 ! h=05\ 1 22 1 H=10A 1 2
F1c. 11-21. Vertical-plane patterns of a horizontal }-wavelength antenna at various

heights k above a perfectly conducting ground as calculated from (11-87) for Ry, = 0.

Equation (11-87) gives the gain in the vertical plane normal to the an-

tenna as a function of « (see Fig. 11-21).

The vertical-plane patterns of a
horizontal £-wavelength antenna are
shown in Fig. 11-21 for heights
h=0.1,0.25,0.5,and 1.0 wavelength.
The circular pattern is for a $-wave-
length antenna, in free space (that is,
with the ground removed) with the
same power input. It is assumed
that loss resistances are zero.

Y It is also of interest to calculate the
field pattern as a function of the azi-
muth angle ¢ for a constant elevation
angle a. The radius vector to the
distant point P then sweeps out a

% cone as suggested in Fig. 11-22. To

find this field pattern, let us first con-

Cone of constant
elevotion angle &

Horizontal
antenng

To pont
p

Fic. 11-22. Horizontal antenna at height

h above ground (z-y plane) showing azi-
muth angle ¢ and clevation angle « for
% distant point P.

Not for resale - distribute for zero cost if you wish.

sider the field pattern of a horizontal
antenna in free space as in Fig.
11-23. The z-y plane is horizontal.
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The field intensity at a large distance in the direction a, ¢ is then given
by the length OA between the origin and the point of intersection of a
cone of elevation angle « and the surface of the three-dimensional doughnut
field pattern of the antenna as suggested in Fig. 11-23. This length is

Cross-section
through doughnut
shaped field pattern

Cone of constant
elevation gngle &

Fre. 11-23. Geometrical construction for finding the feld intensity at a constant
elevation angle «.

obtained from the field-pattern formula of the antenna in free space by
expressing the polar angle ¢’ from the antenna axis in terms of o and ¢.
For the spherical right triangle in Fig. 11-23 we have

cos ¢’ = cos ¢ cos a (11-88a)
or B -
sin ¢’ = /1 — cos’ ¢ cos’ (11-88b)
Substituting these relations in the pattern formula, we get the field in-
tensity in the direction «, ¢. Tor example, by substituting (11-88a) and
(11-88b) into (5-84), noting that ¢’ in (11-88a) and (11-88b) equals 6 in
(5-84), we obtain for the field of a i-wavelength horizontal antenna

cos [(r/2) cos ¢ cos o]

Ee, ¢) =
(@ ¢) V1 — cos’ ¢ cos’

(11-89)

Then the relative field pattern of the horizontal 3-wavelength antenna in
free space as a function of ¢ at a fixed elevation angle «, is given by

Blg) = cos [(1/2) cos ¢ cos ap) 1-
) V1 — cos’ ¢ cos® ap (1490
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To obtain the field pattern of the antenna when situated at a height h
above a perfectly conducting ground, we multiply the above free-space
relations by the pattern of two isotropic point sources of equal amplitude
but opposite phase. The sources are separated by a distance 2h along the
z axis. From (4-10) the pattern of the isotropic sources becomes in the
present case

E;.,. = sin (A, sin a) (11-91)
where A, is the height of the antenna above ground in radians, that is,
2xh
h, = Y

This pattern is independent of the azimuth angle ¢. Multiplying the free-
space field pattern of any horizontal antenna by (11-91) yields the field
pattern for the antenna above a perfectly conducting ground. Thus, for
a horizontal i-wavelength antenna above a perfectly conducting ground
the three-dimensional field pattern as a function of both « and ¢ is obtained
by multiplying (11-89) and (11-91) which gives

B = tosll/2) cosd cosaly iy o) (11-92)

4/1 — cos® ¢ cos’ a

where h, = the height of the antenna above ground in radians
As an example, the field patterns as a function of the azimuth angle ¢ at
elevation angles o = 10° 20° and 30° are presented in Fig. 11-24 as

Fig. 11-24. Azimuthal field patterns of horizontal }-wavelength antenna 4 wavclength
above ground at elevation angles o = 10°, 20°, and 30°.
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calculated from (11-92) for a horizontal i-wavelength antenna at a height
of 3 wavelength (h, = #) above a perfectly conducting ground of infinite
extent. The relative magnitudes of these patterns at ¢ = 90° or 270° are
seen to correspond to the field intensi-
ties at o = 10°, 20°, and 30° in the ver-

tical-plane pattern of Fig. 11-21 for :r:lrfn;\?;%\ o
h = 0.5\. It should be noted that the s &5
field is horizontally polarized at ¢ = 90° "I‘d*i

or 270° and is vertically polarized at n

¢ = 0°and ¢ = 180°. At intermediate

azimuth angles the field is linearly po- !

larized at a slant angle. Ground
11-7b. Flat-top Beam Antenna Above

Ground. In this section the case of

two horizontal, closely spaced, out-of-

phase 3-wavelength elements or flat-

top beam antenna above a perfectly J) _d"lm

conducting ground is discussed. Re- 3V4

ferring to Fig. 11-25, let the i-wave- g e

length elements be at a height h above g, 1195 Flat-top beam antenna

the ground and separated by a distance  above ground.

d. 'The gain in field intensity of this

antenna relative to a i-wavelength antenna in free space with the same

power input is given by’

G (a)[ AAG ]* _ \/ R11 + RIL
N HWFS. 2Ry, + Bar + Ru — Rie — Ru) (11-93)

|1 —1/(d cosa) —1,/(@2h sina) + 1 /(d, cosa + 2k, sin )] |

where d, = spacing of elements in radians = 2wxd/A
height of element above ground in radians = 2xh/A

R,, = self-resistance of a single element

R, = loss resistance of a single element

R,; = mutual resistance of elements 1 and 2

R,; = mutual resistance of elements 1 and 3, etc.
where the elements are numbered as in Fig. 11-25. The gain in (11-93) is
expressed as a function of « in the vertical plane normal to the elements.

Polar plots caleulated by (11-93) for the gain in field intensity of a

flat~top beam antenna consisting of two I-wavelength elements spaced

s
|

1J. D. Kraus, Antenna Arrays with Closely Spaced Elements, Proc. I.R.E., 28,
76-84, February, 1940,

* The symbolsin the brackets are by way of explanation that the gain in field intensity
is for the “Array Above Ground with respect to a Half-Wavelength (antenna in) Free-
Space.”
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h=0.5A h=0.75A
Flat-top beam <
Flat-top beam antenna T~ \\\
Half-wave antenna
antenna / i
o,
¥ f = ™
h h // / Half-wave — S
< - antenna PR
Ground 1 2 3 1 2 3
Gaintn fietd intensity Goin in field intensity
over half-wave antenna over half-wave antenng
in free-space in free-space

Fra. 11-26. Vertical-plane patterns (solid curves) of two-element flat-top beam
antenna with } wavelength spacing at heights of } and % wavelength above ground.
The patterns are plotted relative to a }-wavelength antenna in free space with the same
power input. The vertical plane patterns of a single j-wavelength antenna at the same
heights above ground and with the same power input are shown for comparison by the
dashed curves. The left-hand quadrants of the vertical planes are omitted.

o
-

oa=15"

3.0

2.5 P

7
%=30° / /_ﬂ\\ .

- A

2.0 1 ZHa=30° <
’ Flat-top beom / i T SR W IR Ll
((untennu 4

|

Gain in field intensity over holf-wave antenna in free space

i ME}QA\ b
Iy
—Ig0 ol a N N pd
.5 l &:/ , Halt-wave | N\ ——
P il ontenng ——
—— ol v N
P4 l/ S T
1.0 e N P
e L 5‘,,\"
-~ /a___so _ L—'——‘F""—‘* \
——— a=5° //’ N\
0.5 — — <
e \
T s Tt \
A\
o0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1.0

Height above ground in wavelengths

Fra. 11-27. Gain in field intensity of two-element flat-top beam antenna with %
wavelength spacing (solid curves) and of a single }-wavelength antenna (dashed curves)
as a function of the height above a perfectly conducting ground. Gains are relative to
a single }-wavelength antenna in free space with the same power input. Curves are given
for elevation angles & = 5° 15° and 30°.
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% wavelength apart are presented by the solid curves in Fig. 11-26 for
antenna heights of 1 and 2 wavelength above ground. Patterns of a
single 3-wavelength antenna at the same heights above ground and with
the same power input are shown for comparison (dashed curves). The
gain in field intensity is expressed relative to a 3-wavelength antenna in
free space with the same power input.

In Fig. 11-27 the gain is given as a function of height above ground for
several elevation angles. Curves are shown for both a two-element flat-top
beam and a single horizontal i-wavelength antenna. It is assumed that
loss resistances are zero. If for example, the effective elevation angle at a
particular time on a certain short-wave circuit (transmission via iono-
spheric reflections) is 30°, we note from I'ig. 11-27 that the optimum

To distont
point P

-

Ground

Fra. 11-28. Tilted flat-top beam antenna.

Gain n field intensity

Fia. 11-29. Vertical-plane patterns for horizontal two-element flat-top beam antenns
with } wavelength spacing at an average height of } wavelength above ground for tilt
angles v = 0° 30° 45° and 90°. Patterns give gain in field intensity over a single
$-wavelength antenna in free space with the same power input,
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height for a two-element flat-top beam is 0.5 wavelength. For a single
3-wavelength antenna the optimum height is about 0.57 wavelength.

Gain tn field intensity

Fra. 11-30. Same as for Fig. 11-29 but with array elements at average height of %
wavelength above ground.

It is interesting to consider the effect of tilting the plane of the flat-top
beam elements by an angle v as in Fig. 11-28. Results calculated by an
extension of the above analysis are
illustrated in Figs. 11-29 and 11-30
102 i"‘_ for two-element arrays at average
heights of  and £ above a perfectly
Stacked v conducting‘ ground.’ Pat;cerni are
elements shown for tilt anglesy = 0°, 30°, 45
l h and 90°. In all cases the effect of the
2 tilt is to increase the field intensity
at large elevation angles and to de-

Ground crease it at small angles.
11-7¢. Stacked Horizontal 3-W ave-
length Antennas Above Ground. Con-

3T . sider the case of two horizontal 3-
Image Vi wavelength elements stacked in s
elements vertical plane above a perfectly con-
i ducting ground of infinite extent.
40— The elements have equal in-phase

Fig. 11-31. Array of stacked horizontal currents. The arrangement of the
j-wavelength elements. elements and their images is shown

in Fig. 11-31. The height of the up-
per element above ground is h. Let the spacing between elements be
wavelength so that the height of the lower element above ground ish — /2.

1], D. Kraus, Characteristics of Antennas with Closely Spaced Elements, Radio, 9-19,
February, 1939.
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The gain in field intensity of this array over a single 3-wavelength antenna
in free space with the same power input is

@ [ AAG. ] B \/ Roo + Ros,
! a) HW.FS. B 2(R11 + R\L + R12 - R13) - Rza - R14
- 2| {sin (h, sin @) + sin [(h, — 7) sina]} | (11-94)

where R, is the mutual resistance between elements 1 and 2, R,; the mutual
resistance between elements 1 and 3, ete. The elements are numbered as
in Fig. 11-31. This expression gives the gain as a function of k and of the
elevation angle « in the vertical plane normal to the plane of the elements.
As an example, the gain in field intensity for two stacked in-phase hori-
zontal -wavelength elements over a free-space %i-wavelength antenna
with the same power input is presented in Fig. 11-32 as a function of the
height h above ground, for an elevation angle o« = 20°. The gains at

3.5
. e 5% o e Flat-top beam
A antenna
2
. h
3.0 o—
Single 3 \'
half-wave
on‘iennu / £
2.5 \
\stacked [ \
half-wave 4 \
~ elements - \
2 20 v \\\ :
"E’ / \y NN \
o . / RN
2 ~ / AN \
c 1.5 4 \\ ;
< / v\
8 / -
/ \
1.0 // N \\

g Single haif-wave \ \
antenna in free- \
space \

0.5 \\.
a=20° W
o \V/
0 0.5 1.0 1.5

Height h above ground in wavelengths

Fre. 11-32. Gain in field intensity of array of two stacked horizontal 3-wavelength
elements as a function of the height of the upper element for an elevation angle of 20°,
The elements are stacked } wavelength apart. The gain is relative to a single i-wave-
length antenna in free space with the same power input. Gains of a two-element flat-
top beam antenna and single 3-wavelength antenna as a function of the height above
ground are also shown for comparison at the same elevation angle.
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a = 20° for a two-element flat-top beam antenna and a single horizontal
1_wavelength antenna are also shown as a function of height for com-
parison.

In practice it is common to compare a directional array such as we have
been discussing to a horizontal -wavelength antenna with the same power
input and at the same height above ground (or at the average height of
the array). Thus, the gain as a function of « in the vertical plane for a
horizontal flat-top beam antenna at a height » above ground with respect
to a single 3-wavelength reference antenna at the same height is found by
taking the ratio of Eq. (11-93) to Eq. (11-87).

11-8. Vertical Antennas Above a

4~ Vertical stub antenna Plane Ground. Consider a vertical

To distant stub antenna of length I above a
point P plane horizontal ground of infinite
conductivity as in Fig. 11-33. By

the method of images the ground

Groun may be replaced by an image an-
7 T//?l(/ 77 7777 %W/ tenna of length ! with sinusoidal cur-

Current
distribution

T

1 rent distribution and instantaneous
l 1 current direction as indicated. The
: problem of the stub antenna above
1 ground then reduces to the problem

“.image antenna already treated in Chap. 5 of a lin-
Fie. 11-33. Vertical stub antenna above €8T genter-fed ant.em%a “'ch sym-
a ground plane. metrical current distribution. The

electric field intensity as a function
of the elevation angle « and distance r may be derived from (5-81) obtaining
_—

_ 60 w cos (I, sin @) — cos I,
B, n) =3 \/Rn + R oS a (11-95)

where I, = Bl = (2x/N)!
R, = self-resistance of a vertical stub antenna of length I referred to the
point of current maximum
R, = effective loss resistance of antenna referred to same point
W = power input
The field intensity E(e, ) is in volts per meter if » is in meters, W in
watts, and Ry, and R, in ohms.

Values of the self-resistance referred to the current loop of a vertical
stub antenna above a perfectly conducting ground have been given by
Brown' and by Labus.> These values are presented as a function of

1 G. H. Brown, A Critical Study of the Characteristics of Broadcast Antennas as
Affected by Antenna Current Distribution, Proc. I.R.E., 24, 48-81, January, 1936.

2 J. Labus, Rechnerische Ermittlung der Impedanz von Antennen, Hochfrequenz-
technik und Electroakustik, 41, 17-23, January, 1933.
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antenna length in Fig. 11-34. Using these values of self-resistance, or
radiation resistance, the field intensity of a vertical stub antenna of any
length ! and power input W can be calculated by (11-95) at any elevation
angle o and distance r. Thus, the field intensity by (11-95) along the
ground (a = 0) for a 3-wavelength vertical antenna (I, = =/2) with a power
input of 1 watt (W = 1) at a distance of 1 mile (r = 1,609 meters) is

140

130 7

120 l
/
| /

=3
o

~ [+3 ©
o o (o]
\\
1
l/
v
\

[$)) 2
(@] o
—]

Self-resistance R; in ohms

w H
[o] o
T —

n
(o]

S

/

0
0 06 02 03 04 05 06 07 08 09 1.0
Antenna height lin wavelengths

Fia. 11-34. Radiation resistance at the current loop of a thin vertical antenna as a
function of the height { of the antenna. (Ajfter Brown and Labus.)

6.5 millivolts/meter. The value of R, for a }-wavelength stub antenna is
36.5 ohms, and R, ;, is assumed to be zero.

Vertical stub antennas, singly or in directional arrays, are very widely
used for broadcasting. In this application the field intensity along the
ground (o = 0) is of particular interest. It is also customary to compare
field intensities at some standard distance, say 1 mile, and for some
standard input such as 1 kilowatt. For this case (11-95) reduces to

_1.18(1 — cos l,)

e volts/meter 1196
'\/Rll + RIL / ( )
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where E is the field intensity along the ground at a distance of 1 mile for
a power input of 1 kilowatt. The variation of ¥ as given by (11-95) is
presented in Fig. 11-35 as a function of antenna length."'*> A length of
about 0.64 X\ yields the greatest field

' } intensity along the ground but as
pointed out by Brown' the large
! high-angle radiation for this length
reduces the nonfading range at broad-
cast frequencies (500 to 1,500 ke) as
compared for example with an an-
tenna about % wavelength long. The
nonfading range is largest for an an-
tenna height of 0.528\. The verti-
cal-plane patterns calculated by
(11-95) as a function of the elevation
angle « for vertical antennas of vari-

\ ous heights are presented in Fig.
11-36."% It is assumed that the loss
resistance R,;, = 0, that is, the en-
tire input to the antenna is radiated.
The small amount of high-angle radi-
ation, which is an important factor
in reducing fading, is apparent for

300

n
[4]
o

n
[]
(e}
T
20
"n
\&
\
\
/
]

o
<]

(3]
[o]

Field intensity in millivolts per meter ol one mite
o
o

o0 02 04 06 08 1.0

Height Lof ontenna in wavelengths

Fia. 11-35. Field intensity at the ground

(zero elevation angle) at a distance of 1
mile from a vertical antenna with 1 kilo-
watt input as a function of its height L.
Perfectly conducting ground is assumed.
The solid curve is for an assumed loss
resistance Bz = 0 and the dashed curve
for Ry = 1 ohm,

the [ = 0.528 X antenna as compared
to other lengths.

The analysis of arrays of several
vertical stub antennas can be reduced
in a similar fashion to arrays of sym-
metrical center-fed antennas. Many

of these have been treated in previ-
ous sections. In this case it is often convenient to compare the pattern and
refer the gain to a single vertical stub antenna with the same power input.
The situation of a symmetrical center-fed vertical antenna with its lower
end some distance above the ground can also be treated by the method of
images. In this case the antenna is reduced to a collinear array.
For the case of a linear array of vertical elements of equal height and
of the same current distribution, the pattern E(¢) as a function of the
azimuth angle ¢ at a constant elevation angle « is given by

E(¢) = Ei.o.(¢') X By (11-97q)

1 See G. H. Brown, A Critical Study of the Characteristics of Broadcast Antennas as
Affected by Antenna Current Distribution, Proc. I.R.E., 26, 78-145, January, 1937.

t C. E. Smith, “Directional Antennas,” Cleveland Institute of Radio Electronics,
Cleveland, Ohio, 1946.

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



Sec. 11-8] ARRAYS OF LINEAR ANTENNAS 317

where E,,,.(¢") = relative pattern of array of isotropic point sources used
to replace elements

relative field intensity of a single vertical element at the
elevation angle a

The angle ¢’ in the pattern formula of the array of isotropie sources is the

E,

60°
Vertical .' .'
antenna ' LOX
' : '” (360°)
i A . 7>
i 5 ‘ il
N o= %7 L (230°
17 1l B
Ground l * — A } o° '&/' N Ll ‘\ 0°
0 100 25)0 300 o] 100 200 4300
Field intensity in Field intensity in Y62 276
millivolts per meter195 236 246 millivolts per meter
at one mile at one mile 226 24!
(a) (b) (¢)

Fra. 11-36. Vertical-plane field patterns of vertical antennas for several values of
antenna height . The field intensity is expressed in millivolts per meter at a distance
of 1 mile for 1 kilowatt input. Perfectly conducting ground and zero loss resistance
are assumed.

angle with respect to the array axis or x axis in Fig. 11-37a. Before in-
serting this formula into (11-97a), it is necessary to express ¢/ in terms of

z
[/
Linear (4
arra
Array axis ,___S_y_\ Vlertica'l a
X { 1 1 l lre ement—a
: v 1
o0
¢ (d)
(a) {

Fic. 11-37. Geometrical construction for finding field intensity of a linear array of
vertical eluments at a constant elevation angle a.

the azimuth angle ¢ and elevation angle o (Iig. 11-37a). This is done by
the substitutions

cos ¢’ = oS¢ cos a (11-97b)
and

sing’ = /1 — cos’ ¢ cos’ @ (11-97¢)

If the relative field intensity formula E, of a single vertical element is
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given in terms of the polar angle 8, the elevation angle « is introduced by

means of the substitution § = 90°

— a, since, as indicated in Fig, 11-37b,

6 and o are complementary angles.

<-——d——->J
A
'2' al, 12
JL‘?I 2 “wParasitic element
Driven
element

¢=0°

Fig. 11-38. Array with one driven
element and one parasitic element.

11-9. Arrays with Parasitic Elements.
In the above sections it has been assumed
that all the array elements are driven,
that is, all are supplied with power by
means of a transmission line. Direc-
tional arrays can also be constructed
with the aid of elements in which cur-
rents are induced by the fields of a driven
clement. Such elements have no trans-
mission-line connection to the trans-
mitter and are usually referred to as
“parasitic elements.”’

Let us consider the case of an array in
free space consisting of one driven
3-wavelength element (element 1) and

one parasitic element (element 2) as
in Fig. 11-38. The procedure follows that used by Brown.! Suppose that
both elements are vertical so that the azimuth angle ¢ is as indicated. The
circuit relations for the elements are

V, =1,z + I2Z12 (11—98(1)
0= ILZ: + 11Z12 (11—98b)
From (11-98b) the current in element 2 is
. ZIZ__ |Zl2 _Zl'ﬂ____ _Zﬂl _
I, = -1, T = I, ————l——l T | J 2 = —1I, 7, S T — T2 (11-99a)
or
L=02 » (11-098)
2 1 Z22
where § = © + 7, — 75, In which
T = arctan}%l:-

Ty = arc‘camzf—z—2
‘22
where Ry, + jX,; = Z,» = mutual impedance of elements 1 and 2
R, + jX,, = Z,, = self-impedance of the parasitic element
The electric field intensity at a large distance from the array as a function
of ¢ is

1 G. H. Brown, Directional Antennas, Proc. I.R.E., 26, 78-145, January, 1937.
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E@) = kI, + I, /+d, cos¢) (11-100)
where d, = Bd = %\Ed
Substituting (11-99b) for I, in (11-100)

le

ZZZ

E(p) = k11(1 + /'t + d, cos ¢) (11-101)

\

Solving (11-98a) and (11-98b) for the driving-point impedance Z,; of the
driven element, we get

. Zfz _ ; Z?z ‘/27-"'
Z, =17, — Z,, = Zy — Zo T e (11-102)
The real part of Z, is
2
Ry =Ry — | 22| cos 2r — 15) (11-108)
Zyy
Adding a term for the effective loss resistance if any is present, we have
2
I{l = R]l + R]L - —Z—lz cos (27'," - ’Tz) (11-104)
22

For a power input W to the driven element

W W
= \/; ~ VR, + Ry — |Z;22/Z22 ' cos (27, — 79) (11-105)

and substituting (11-105) for I, in (11-101) yields the electric field in-
tensity at a large distance from the array as a function of ¢. Thus,

B@) = by -

R, + R, — 1Zf2/Z22 l Ccos (2Tm - Tz)

. [1 + %—’ /t+d, cos 4 (11-106)

For a power input W to a single vertical 3-wavelength element the electric
field intensity at the same distance is

. /_L
Eqyw(¢) =k, =k Rt R (11-107)

where Ry, = self-resistance of single 3-wavelength element

Ry = loss resistance of single 3-wavelength element
The gain in field intensity (as a function of ¢) of the array with respect
to a single i-wavelength antenna with the same power input is the ratio
of (11-106) to (11-107). Since Ry = R,, and letting Ry, = R,z, we have

A.. _ Ru + RIL
GI(@[H.VVJ - \/Ru + Ry, — | VAN YA | cos 27, — 72)

(1+L%— JE+d, cos¢) (11-108)
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If Z,, is made very large by detuning the parasitic element (that is, by
making X,, large), Eq. (11-108) reduces to unity, that is to say, the field of
the array becomes the same as the single 3-wavelength comparison antenna.

By means of a relation equivalent to (11-108), Brown' has analyzed
the array with a single parasitic element for various values of parasitic
element reactance (X,,) and was the first to point out that spacings of
less than 1 wavelength were desirable.

The magnitude of the current in the parasitic element and its phase
relation to the current in the driven element depends on its tuning. The
parasitic element may have a fixed length of 7 wavelength, the tuning
being accomplished by inserting a lumped
reactance in series with the antenna at its
center point. Alternatively the parasitic
element may be continuous and the tun-

= '::;T;T":: ing accomplished by adjusting the length.

This method is often simpler in practice

but is more difficult of analysis. By chang-

, Director ing the tuning of the parasitic element,

Reflector 2000 it can act as a reflector sending the maxi-

F1g. 11-39. Three-element array.  mum radiation in the ¢ = 180° direction
(Fig. 11-38) or as a director sending the
maximum radiation in the ¢ = 0° direction.

Antenna arrays may also be constructed with more than one parasitic
element. A common arrangement uses one driven element and two
parasitic elements and is usually referred to as a three-element array. An
array of this type is shown in Fig. 11-39, one parasitic element acting as a
reflector and the other as a director. The analysis for the three-element
array is more complex than for the two-element type treated above.
Experimentally measured field patterns of a horizontal three-element array
situated 1 wavelength above a square horizontal ground plane about 13
wavelengths on a side are presented in Fig. 11-40. The element lengths
and spacings are as indicated. The gain at « = 15° for this array at a
height of 1 wavelength is about 5 db with respect to a single 3-wavelength
dipole antenna at the same height.” The vertical plane pattern is shown
in Fig. 11-40a. It is interesting to note that because of the finite size of
the ground plane there is radiation at negative elevation angles. This
phenomenon is characteristic of antennas with finite ground planes, the
radiation at negative angles being largely the result of currents on the

! G. H. Brown, Directional Antennas, Proc. I.R.E., 26, 78-145, January, 1937,

? Note that it is necessary to specify both the height and elevation angle at which the
comparison is made. In comparing one antenna with another, the gain as a function of
elevation angle at a given height or as a function of height at a given clevation angle
nay, in general, range from zcro to infinity.
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edges of the ground planes or beneath it. The azimuthal patterns at
elevation angles @ = 10°, 15°, and 20° are shown in Fig. 11-40b. A parasitic
array of this type with closely spaced elements has a small driving-point
radiation resistance and a relatively narrow band width.

Ground plane

Side view

for $=0°

Oriven
element

Reflecto;) l ‘Im,ecfor

Plan view N

(b) 60° v o

Fia. 11-40. Measured vertical plane patiern (a) and horizontal plane patierns (b)
at three elevation angles for a three-element array located 1 wavelength above a large
ground plane. (Patterns by D. C. Cleckner, Antenna Laboratory, The Ohio State Uni-
verstty.)

Arrays may be constructed with larger numbers of parasitic elements
although customarily with larger spacings between elements. Yor example,
Yagi* has built arrays with a number of parasitic director elements ar-
ranged in a row in front of the driven element. Ie also used one or more
parasitic reflector elements with such arrays.

' H. Yagi, Beam Transmission of Ultra-short Waves, Proc. I.R.E., 16, 715-740,
June, 1928,
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PROBLEMS

11-1. a. Calculate and plot the gain of a broadside array of two side-by-side
3-wavelength elements in free space as a function of the spacing d for
values of d from 0 to 2 wavelengths. Express the gain with respect to a
single 3-wavelength element. Assume all elements are 100 per cent
efficient.

b. What spacing results in the largest gain?

¢. Calculate and plot the radiation-field patterns for 3 wavelength spacing.
Show also the patterns of the 3 wavelength reference antenna to the
proper relative scale.

11-2. A two-element end-fire array in free space consists of two vertical side-by-
side 3-wavelength elements with equal out-of-phase currents. At what angles in
the horizontal plane is the gain equal to unity?

a. When the spacing is 1 wavelength?

b. When the spacing is + wavelength?

11-3. Calculate and plot the field and phase patterns of the far field for an array
of two vertical side-by-side 3-wavelength elements in free space with + wavelength
spacing when the elements are

a. in phase and

b. 180° out of phase.

For the in-phase case show the patterns in both the y-z or vertical plane and z-y
or horizontal plane of Fig. 11-2a. For the out-of-phase case show the patterns in
both the z-z or vertical plane and z-y or horizontal plane of Fig. 11-7a.

11-4. Calculate the vertical and horizontal plane free-space field patterns of a
flat-top beam antenna consisting of two horizontal out-of-phase i-wavelength
elements spaced 3 wavelength. Assume a loss resistance of 1 ohm and show the
relative patterns of a 1-wavelength reference antenna with the same power input.

11-5. Confirm Eqgs. (11-85) and (11-93).

11-6. a. Consider two }-wavelength side-by-side vertical elements spaced a

distance d with currents related by I, = al, ﬁ Develop the gain ex-
pression in a plane parallel to the elements and the gain expression in a
plane normal to the elements, taking a vertical 3-wavelength element
with the same power input as reference (0 < a < 1). Check that
these reduce to (11-69) and (11-67) when a = 1.

b. Plot the field patterns in both planes, and show also the field pattern of
the reference antenna in proper relative proportion for the case where
d= M4 a= % and § = 120°

11-7. a. Calculate the driving-point impedance at the center of each element of

an in-phase broadside array of six side-by-side 3-wavelength elements
spaced 3 wavelength apart. The currents have a Dolph-Tchebyscheff
distribution such that the minor lobes have } the field intensity of the
major lobe.

b. Design a feed system for the array.

11-8. a. Develop Eq. (11-94).

b. Calculate and plot from (11-94) the gain in field intensity for an array
of two in-phase horizontal 3-wavelength elements stacked 4 wavelength
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apart (as in Fig. 11-31) over a 3-wavelength antenna in free space with
the same power input as a function of 2 up to # = 1.5\ for an elevation
angle a = 10°. Also calculate and plot for comparison on the same
graph the gains at a = 10° for a two-element horizontal flat-top beam
antenna and for a single horizontal -wavelength antenna as a function
of the height above ground {rom 2 = 0 to A = 1.5\. Note difference of
these curves and those for @« = 20° in I'ig. 11-32.

11-9. A broadcast-station antenna array consists of two vertical $-wavelength
towers spaced + wavelength apart. The currents are equal in magnitude and in
phase quadrature. Assume a perfectly conducting ground and zero loss resistance.
Calculate and plot the azimuthal field pattern in millivolts (rins) per meter at 1 mile
with 1 kilowatt input for vertical elevation angles « = 0°, 20°, 40°, 60°, and 80°.
The towers are series fed at the base. Assuine that the towers are infinitesimally
thin.

11-10. Calculate and plot the relative field pattern in the vertical plane through
the axis of the two-tower broadcast array fulfilling the requirements of Prob. 19,
Chap. 4, if the towers are ;-wavelength high and are series fed at the base. Assume
that the towers are infinitesimally thin and that the ground is perfectly conducting.

11-11. Calculate and plot the relative field pattern in the vertical plane through
the axis of the three-tower broadcast array fulfilling the requirements of Prob. 20,
Chap. 4, if the towers are § wavelength high and are series fed at the base. Assume
that the towers are infinitesimally thin and that the ground is perfectly conducting.

11-12. Design a broadcast-station antenna array of two vertical base-fed towers
1.wavelength high and spaced 3 wavelength which produces a broad maximum of
field intensity to the north in the horizontal plane and a null at an elevation angle
a = 30° and azimuth angle ¢ = 135° measured ccw from north. Assume that the
towers are infinitesimally thin, that the ground is perfectly conducting, and that the
base currents of the two towers are equal. Specify the orientation and phasing of
the towers. Calculate and plot the azimuthal field pattern at « = 0° and a = 30°
and also the pattern in the vertical plane through ¢ = 135°. Suggested procedure:
Solve (11-97b) for ¢’ at the null. Then set ¢ in the pattern factor in (11-67) equal
to ¢’ and solve for the value of § which makes the pattern factor zero. The relative
field intensity at any angle (¢, «) is then given by (11-68) where sin § = cos¢’ =
cos a ¢os ¢ in the first pattern factor and 8 = 90° — « in the second pattern factor.

11-13. Design a broadcast-station array of two vertical base-fed towers L-wave-
length high that produces a broad maximum of field intensity to the north in the
horizontal plane and a null at all vertical angles to the west. Assume that the
towers are infinitesimally thin and that the ground is perfectly conducting. Specify
the spacing, orientation, and phasing of the towers. Calculate and plot the azi-
muthal relative field patterns at elevation angles of « = 0° 30°, and 60°.

11-14. Two, thin center-fed 3-wavelength antennas are driven in phase opposi-
tion. Assume that the current distributions are sinusoidal. If the antennas are
parallel and spaced 0.2 wavelength,

a. Calculate the mutual impedance of the antennas.
b. Calculate the gain of the array in free space over one of the antennas
alone.
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CHAPTER 12

REFLECTOR-TYPE ANTENNAS

12-1. Introduction. Reflectors are widely used to modify the radiation
pattern of a radiating element. For example, the backward radiation from
an antenna may be eliminated with a plane sheet reflector. In the more
general case, a beam of predetermined characteristics may be produced
by means of a large, suitably shaped, and illuminated reflector surface.
The characteristics of antennas with sheet reflectors or their equivalent
are considered in this chapter.

A number of reflector types are illustrated in Fig. 12-1. The arrange-
ment in Fig. 12-1a has a large, flat sheet reflector near a linear dipole
antenna to reduce the backward radiation (to the left in the figure). With
small spacings between antenna and sheet this arrangement also yields a
substantial gain in the forward radiation. This case has been discussed in
Sec. 11-7a with the ground acting as the flat sheet reflector. The desirable
properties of the sheet reflector may be largely preserved with the reflector
reduced in size as in Fig. 12-1b and even in the limiting case of Fig. 12-1c.
Here the sheet has degenerated into a thin reflector element. Whereas the
properties of the large sheet are relatively insensitive to small frequency
changes, the thin reflector element may be highly sensitive to frequency.
The case of a I-wavelength antenna with parasitic reflector element was
treated in Sec. 11-9.

With two flat sheets intersecting at an angle or corner as in Fig. 12-1d,
a sharper radiation pattern can be obtained. This arrangement, called a
corner-reflector antenna, is most practical where apertures of 1 or 2 wave-
lengths are of convenient size. A corner reflector without an exciting
antenna can be used as a passive reflector or target for radar waves. In
this application the aperture may be many wavelengths, and the corner
angle is always 90°. Reflectors with this angle have the property that an
incident wave is reflected back toward its source as in Fig. 12-1e.

When it is convenient to build antennas with apertures of many wave-
lengths, parabolic reflectors can be used to provide highly directional
antennas. A parabolic reflector antenna is shown in Fig. 12-1f. The
parabola reflects the waves originating from a source at the focus into a
parallel beam. Many other shapes of reflectors can be employed for
special applications. For instance, with an antenna at one focus, the

324
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ellipse reflector (Fig. 12-1g) produces a diverging beam with all reflected
waves passing through the second focus of the ellipse. Examples of
reflectors of other shapes are the hyperbolic' and the circular reflectors®

shown in Figs. 12-1h and <.

Large flat
sheet Smoll flat Reflector
sheet /elemenf

(a) (6) (¢)
Corner Passive Parabotic
reflector corner reflector
antenng reflector

oo
‘/Driven element
X @ Aperture at focus
! Aperture
- Aperture
Driven
element
(d) (e) (f)
Hyperbolic
Driven element N reflector Circulor
Eltiptical \ N reflector
reflector /wmaa \ X
- - 4Driven Driven
Y element element
——— 1 = S
Ellipse /
/
(9) (h) (?)

Fre. 12-1. Reflectors of various shapes.

The plane sheet reflector, the corner reflector, and the parabolic reflector
are discussed in more detail in the following sections.

12-2. Plane Sheet Reflector. The problem of an antenna at a distance S
from a perfectly conducting plane sheet reflector of infinite extent is

1 Chap. 6 by G. Stavis and A. Dorne, “Very High Frequency Techniques,” Radio
Research Laboratory Staff, MeGraw-Hill Book Company, Inc., New York, 1947.

2J. Ashmead and A. B. Pippard, The Use of Spherical Reflectors as Microwave
Seanning Aerials, J.I.E.E. (London), 93, Part IIIA, No. 4, 627-632, 1946.
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readily handled by the method of images." In this method the reflector is
replaced by an image of the antenna at a distance 28 from the antenna as
in Fig. 12-2. This situation is identical with the one considered in Sec.

Flat sheet
reflector
{mage Antennag
O—S—>fe—S—@

F1g. 12-2. Antenna
with flat sheet reflector.

11-7, for a horizontal antenna above ground. If
the antenna is a i-wavelength dipole this in turn
reduces to the problem of the two-element flat-top
beam antenna discussed in Sec. 11-5. Assuming
zero reflector losses, the gain in field intensity of a
i-wavelength dipole antenna at a distance S from
an infinite plane reflector is from (11-79),

RutRi .
G/#) = 2| g | sin (S, cos )| (12:1)

where S, = ?nr%
The gain in (12-1) is expressed relative to a 1-wave-
length antenna in free space with the same power
input. The field patterns of -wavelength antennas

at distances S = X\/4, A/8, and A/16 from the flat sheet reflector are
shown in Fig. 12-3. These patterns are calculated from (12-1) for the

case where B, = 0.

Half-wave
jantenna in
free space

Antenna
2§

)

[«-Flat sheet reflector

—

1 Geinin
field intensity

&8

Antenng
4%){

Fia. 12-3. Patterns of }-wavelength antenna at spacings of 1, }, and 1s wavelengths
from infinite flat sheet reflector. Patterns give gain in field intensity over i-wavelength
antenna in free space with same power input.

1 See, for example, G. H, Brown, Directional Antennas, Proc. I.R.E., 25,122, January,

1937,
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The gain as a function of the spacing S is presented in Fig. 12-4 for
assumed antenna loss resistances B, = 0, 1, and 5 ohms. These curves

3.0
Figt sheet
» s reflector
.5
R=0 *Holf-\vave
> R—:I\ ’ ontenna
= i\ o
w 2.0t
] '\'/
z { Ru=50hms \\ /
o IS N 7
< N /
< 1.0
£
o
)
0.5
Id
o L
0 o.1 0.2 0.3 0.4 05 0.6 0.7

Spacing S in wavelengths

Fig. 12-4. Gain in field intensity of 3-wavelength dipole antenns at distance S from
flat sheet reflector. Gain is relative to i-wavelength dipole antenna in free space with
the same power input. Gain is in direction ¢ = 0 and is shown for an assumed loss
resistance Ry, = 0, 1, and 5 ohms.

are calculated from (12-1) for ¢ = 0. It is apparent that very small

spacings can be used effectively provided that losses are negligible. How-

Flatsheet  €VeD the band width is narrow for

£ eflector small spacings as discussed in Sec. 11-5.

With wide spacings the gain is less, but

the band width is larger. Assuming an

antenna loss resistance of 1 ohm, a

spacing of 0.125 A yields the maximum

¢ f gain. For § = 0.25 X\, the gain is about
Beam 1.3 db less.

A large flat sheet reflector can con-

vert a bidirectional antenna array into

a unidirectional system. An example

is shown in Fig. 12-5. Here a broad-

side array of 16 in-phase §-wavelength

elements spaced % wavelength apart is

backed up by a large sheet reflector so

e 195, Array of }wavelonath ol that a unidirectional beam is produced.

5. by < 3 - o . .

mIe(:;ts with ﬂaiyshe:t :aﬂecto%- (bill- The feed systgm for the array is m.dl-

board or mattress antenna). cated, equal in-phase voltages being

applied at the two pairs of terminals

F-F. If the edges of the sheet extend some distance beyond the array,

the assumption that the ground plane is infinite in extent is a good first
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approximation. The choice of the spacing S between the array and the
sheet, usually involves a compromise between gain and band width. If a
spacing of § wavelength is used, the radiation resistance of the elements
of a large array remains about the same as with no reflector present.’
This spacing also has the advantage over wider spacings of reduced inter-
action between elements. On the other hand, a spacing such as I wave-
length provides a greater band width, and the precise value of S is less
critical in its effect on the element impedance.

12-3. Corner-reflector Antenna.’

Corner
reflector

Two flat reflecting sheets intersecting
at an angle or corner as in Fig. 12-6
form an effective directional antenna.
When the corner angle « = 90°, the

Tronsmission — omemet sheets intersect at right angles form-
ing a square corner reflector. Corner
Beam

angles both greater or less than 90°
can be used although there are prac-
tical disadvantages to angles much
less than 90°. A corner reflector with
a = 180° is equivalent to a flat sheet
reflector and may be considered as a
limiting case of the corner reflector. This case has been treated in Sec. 12-2.

Assuming perfectly conducting reflecting sheets of infinite extent, the
method of images can be applied to analyze the corner-reflector antenna
for angles « = 180°/n, where n is any positive integer. This method of
handling corners is well-known in electrostatics.” Corner angles of 180°
(flat sheet), 90°, 60°, etc. can be treated in this way. Corner reflectors
of intermediate angle can not be determined by this method but can be
interpolated approximately from the others.

In the analysis of the 90° corner reflector there are three image elements
2, 3, and 4 located as shown in Fig. 12-7a. The driven antenna 1 and
the three images have currents of equal magnitude. The phase of the
currents in 1 and 4 is the same. The phase of the currents in 2 and 3 is
the same but 180° out of phase with respect to the currents in 1 and 4.
All elements are assumed to be £ wavelength long.

At the point P at a large distance D from the antenna, the field intensity is

Fig. 12-6. Corner-reflector antenna.

E(¢) = 2kI, |[cos (8, cos ¢) — cos (S, sin ¢)] | (12-2)

1 H. A. Wheeler, The Radiation Resistance of an Antenna in an Infinite Array or
Waveguide, Proc. I.R.E., 36, 478-487, April, 1948.

2 J. D. Kraus, The Corner Reflector Antenna, Proc. I.R.E., 28, 513-519, November,
1940.

s See, for example, Sir James Jeans, “Mathematical Theory of Eleetricity and Mage
netism,” Cambridge University Press, London, 5th ed., p. 188.
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Corner reflector

+
S——*’I\ .
90° ' Driven

element
/ 3 o
/
S 3
7/ - 3 -

(a) ®)
Frg. 12-7. Square corner reflector with images used in analysis (e¢) and four-lobed
pattern of driven element and images (b).

il

where [, current in each element
S, = spacing of each element from the corner in radians
2w (S/X\)
k = constant involving the distance D, ete.
The emf V, at the terminals at the center of the driven element is

Vl = Ilzll -+ IlRlL + I1Z14 - 2I1Z13 (12-3)

where Z,, = self-impedance of driven element

R, = equivalent loss resistance of driven element

71, = mutual impedance of elements 1 and 2

Z,4 = mutual impedance of elements 1 and 4
Similar expressions can be written for the emfs at the terminals of each
of the images. Then if W is the power delivered to the driven element
(power to each image element is also W), we have from symmetry that

W
R S S rey (128

4Substituting (124) in (12-2) yields
w
Ee) = 2’“\/&1 ¥ o + B — 2R,
- | feos (8, cos ¢) — cos (S, sin¢)] | (12-5)

The field intensity at the point P at a distance D from the driven 13-
wavelength element with the reflector removed is

B / W
Eaw (o) =k R (12-6)

where k£ = the same constant as in (12-2) and (12-5)
This is the relation for field intensity of a }-wavelength dipole antenna
in free space with a power input W and provides a convenient reference

I
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for the corner-reflector antenna. Thus, dividing (12-5) by (12-6), we
obtain the gain in field intensity of a square corner reflector antenna over
a single 1-wavelength antenna in free space with the same power input, or

_ E‘(¢) iy J R11 + RIL
Gi¢) = Ex.w.(¢) =2 B, + R + Riu — 2Ry,

« | [eos (8. cos ¢) — cos (S, sin¢)] | (12-7)

where the expression in brackets is the pattern factor and the expression
included under the radical sign is the coupling factor. The pattern shape
is a function of both the angle ¢ and the antenna-to-corner spacing S.
The pattern calculated by (12-7) has four lobes as shown in Fig. 12-7b.
However, only one of the lobes is real.

Expressions for the gain in field in-

+8 tensity of corner reflectors with cor-
\\\\ ner angles of 60°, 45° ete. can be ob-
O tained in a similar manner. For the
6o 60° corner the analysis requires a
- - total of six elements, one actual an-
g tenna and five images as in Fig. 12-8.
-7 Gain-pattern expressions for corner
+g S~ reflectors of 90° and 60° are listed in
Fie. 12-8. 60° corner reflector with TLable12-1. Theexpressionfora 180°
images used in analysis. “corner’’ or flat sheet is also included.
TABLE 12-1
GAIN-PATTERN FORMULAS FOR CORNER-REFLECTOR ANTENNAS
Number of Gain in field intensity over 1-wave-
Corner . . .
elements in length antenna in free space with
angle analysis same power input
180° 2 2\/1311 Ii‘ ;:LR’j o sin (S, cos ¢)
0| Ry + Ry
90° 4 \/Ru + Rz + R — 2Ry
| [cos (S, cos ) — cos (S, sin ¢)] |
9 [ Ry + Ry
60° 6 VRu + RIL + 2Ru - 2R12 - Rxo
| {sin (8, cos ¢) — sin [S, cos (60° — ¢)]
— sin [8, cos (60° + ¢)1} |
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In the formulas of Table 12-1 it is assumed that the reflector sheets are
perfectly conducting and of infinite extent. Curves of gain vs. spacing
calculated from these relations are presented in Fig. 12-9. The gain given
is in the direction ¢ = 0. Two curves are shown for each corner angle.
The solid curve in each case is computed for zero losses (R, = 0), while
the dashed curve is for an assumed loss resistance B,;, = 1 ohm. It is
apparent that for efficient operation too small a spacing should be avoided.

14
60°_. __'n'ﬁ..‘
12 7
// '\.\
/
/
10 /4? Fo——
98"’ / T~
7
@ / /
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Fic. 12-9. Gain of corner reflector antennas over a }-wavelength antenna in free
space with the same power input as a function of the antenna-to-corner spacing. Gain
is in the direction ¢ = 0 and is shown for zero loss resistance (solid curves) and for an
assumed loss resistance of 1 ohm (Ry;, = 1 ohm) (dashed curves).

A small spacing is also objectionable because of narrow band width. On
the other hand, too large a spacing results in less gain.

The calculated pattern of a 90° corner reflector with antenna-to-corner
spacing S = 0.5 X is shown in Fig. 12-10a. The gain is nearly 10 db over
a reference j-wavelength antenna. This pattern is typical if the spacing
S is not too large. If S exceeds a certain value, a multilobed pattern may
be obtained. For example, a square-corner reflector with S = 1.0 A has
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a two-lobed pattern as in Fig. 12-10b. If the spacing is increased to 1.5,
the pattern shown in Fig. 12-10¢ is obtained with major lobe in the ¢ = 0
direction but with minor lobes present. This pattern may be considered
as belonging to a higher order radiation mode of the antenna. The gain
over a single 3-wavelength dipole antenna is 12.7 db.

F1g. 12-10. Calculated patterns of square corner-reflector antennas with antenna-to-
corner spacings of 0.5 wavelength (a), 1.0 wavelength (b), and 1.5 wavelengths (c).
Patterns give gain relative to 3-wavelength antenna in free space with same power

input.

Restricting patterns to the lower order radiation mode (no minor lobes),
it is generally desirable that S lie between the following limits:
« S

90° 0.25-0.7
180° (flat sheet) 0.1-0.3 A
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The terminal resistance Ry of the driven antenna is obtained by dividing
(12-3) by I, and taking the real parts of the impedances. Thus,
RT = Ru + RlL + R14 - 2R12 (12'8)

If R, = 0, the terminal resistance is all radiation resistance. The varia-
tion of the terminal radiation resistance of the driven element is presented
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Fi1g. 12-11. Terminal radiation resistance of driven i-wavelength antenna as a func-
tion of the antenna-to-corner spacing for corner reflectors of three corner angles.

in Fig. 12-11 as a function of the spacing S for corner angles « = 180°,
90°, and 60°.

In the above analysis it is assumed that the reflectors are perfectly
conducting and of infinite extent, with the exception that the gains with
a finitely conducting reflector may be approximated with a proper choice
of R;.. The analysis provides a good first approximation to the gain-
pattern characteristics of actual corner reflectors with finite sides provided
that the sides are not too small. Neglecting edge effects, a suitable value
for the length of sides may be arrived at by the following line of reasoning.
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An essential region of the reflector is that near the point at which a wave
from the driven antenna is reflected parallel to the axis. For example,
this is the point A of the square corner reflector of Fig. 12-12. This point
is at a distance of 1.418 from the corner C, where S is the antenna-to-
corner spacing. If the reflector ends at the point B at a distance L = 28
from the corner, as in Fig. 12-12, the reflector extends approximately
0.68 beyond A. With the reflector ending at B, it is to be noted that
the only waves reflected from infinite sides, but not from finite sides, are

Fig. 12-12. Square corner reflector with sides of length L equal to twice the antenna-
to-corner spacing S.

those radiated in the sectors 5. Furthermore, these waves are reflected
with infinite sides into a direction that is at a considerable angle ¢ with
respect to the axis. Hence, the absence of the reflector beyond B should
not have a large effect. It should also have relatively little effect on the
driving-point impedance. The most noticeable effect with finite sides is
that the measured pattern is appreciably broader than that calculated for
infinite sides and a null does not occur at ¢ = 45° but at a somewhat
larger angle. If this is not objectionable, a side length of twice the antenna-
to-corner spacing (L = 28) is a practical minimum value for square
corner reflectors.
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Although the gain of a corner reflector with infinite sides can be increased
by reducing the corner angle, it does not follow that the gain of a corner
reflector with finite sides of fixed length will increase as the corner angle
is decreased. To maintain a given efficiency with a smaller corner angle
requires that S be increased. Also on a 60° reflector, for example, the
point at which a wave is reflected parallel to the axis is at a distance of
1.738 from the corner as compared to 1.41S for the square corner type.
Hence, to-realize the increase in gain requires that the length of the re-
flector sides be much larger than for a square corner reflector designed for
the same frequency. Usually this is a practical disadvantage in view of
the relatively small increase to be expected in gain.

To reduce the wind resistance offered by a solid reflector, a grid of

| - y
| L=2S >

Transmission
line \

Supporting
member

\
> | 790 H
28

/ \ - koo

Driven
\\ element

Fra. 12-13. Grid-type reflector.

parallel wires or conductors can be used as in Fig. 12-13. The supporting
member joining the mid-points of the reflector conductors may be either
a conductor or an insulator. In general the spacing @ between reflector
conductors should be equal to or less than 0.1 A. With a }-wavelength
driven element the length H of the reflector conductors should be equal to
or greater than 0.6 A. If the length H is reduced to values of less than
0.6 A, radiation to the sides and rear tends to increase and the gain de-
creases. When H is decreased to as little as 0.3 A, the strongest radiation
is no longer forward and the “reflector’”’ acts as a director.

Two square corner reflectors of practical dimensions are illustrated ir
Fig. 12-14. The one at (a) with S = 0.35 X and the side length L = 0.7 A
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¢an be used where the physical size of the antenna must be a minimum,
If physical size is not a restriction, the design of (b)) may be used with the
advantage of a greater band width.'

The square corner reflectors of Fig. 12-14 have apertures between 1
and 2 wavelengths. If an aperture of 1 wavelength is inconveniently
large, a corner reflector of smaller side length and larger corner angle can
be used. Carrying this procedure to the limit results in a closely spaced
flat-sheet reflector (@ = 180°) as in Fig. 12-1b. If, on the other hand,

LOX 0.5, —>@® L4x

Antenna Antenna

(a)

Fig. 12-14. Dimensions for square corner-reflector antennas.

an aperture of more than 2 wavelengths is convenient, more directivity
can be obtained for a given physical size of antenna with a parabolic
reflector.

12-4. The Parabola. General Properties. Suppose that we have a
point source and that we wish to produce a plane-wave front over a large
aperture by means of a sheet reflector. Referring to Fig. 12-15a, it is
then required that the distance from the source to the plane-wave front
via path 1 and 2 be equal or’

2L = R(1 + cos §) (12-9)
and
2L
B =105 (12-10)

1The type of driven element is also a factor in determining the band width. Thus, a
fat cylindrical element or a biconical element gives more band width than a thin driven
element.

2 'This is an application of the principle of equality of path length to the special case
where all paths are in the same medium. For the more general situation involving more
than one medium see Chap. 14,
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This is the equation for the required surface contour. It is the equation
of a parabola with the focus at F.

Referring to Fig. 12-15b, the parabolic curve may be defined as follows.
The distance from any point P on a parabolic curve to a fixed point F,
called the focus, is equal to the perpendicular distance to a fixed line called
the directriz. Thus, in Fig. 12-15b, PF = PQ. Referring now to Fig.

|
Y Parabola B’
| A'
1 [
|
1 / /‘;
t P P !
Fath1 Q ! Q i s
R 1
| l
4 .
- F Axis F J! Axis
‘\L e Focus X |
Path 2w Vertex j
Plane |
wave ]
front |
I
Sheet Directrix A
reflector B
Aperture
plane
(a) (b) (¢)

Fra. 12-15. Parabolic reflectors.

12-15¢, let AA’ be a line normal to the axis at an arbitrary distance @S
from the directrix. Since PS = QS — PQ and PF = P, it follows
that the distance from the focus to S is

PF + PS = PF + QS — PQ = QS (12-11)

Thus, a property of a parabolic reflector is that all waves from an isotropic
source at the focus that are reflected from the parabola arrive at a line
AA’ with equal phase. The “image’’ of the focus is the directrix, and the
reflected field along the line A A’ appears as though it originated at the
directrix as a plane wave. The plane BB’ (Fig. 12-15¢) at which a reflector
is cut off is called the aperture plane.

A cylindrical parabola converts a cylindrical wave radiated by an in-
phase line source at the focus, as in Fig. 12-16a, into a plane wave at the
aperture. Or a paraboloid of revolution converts a spherical wave from
an isotropic source at the focus as in Fig. 12-16b into a uniform plane wave
at the aperture. Confining our attention to a single ray or wave path, the
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Cylindrical
parabola Paraboloid
Line
source Paint
source
(a) (b)
Aperture Aperture

Fre. 12-16. Line source and cylindrical parabolic reflector (a) and point source and
paraboloidal reflector (b).

paraboloid has the property of reflecting any ray from the focus into a di-
rection parallel to the axis as suggested in Fig. 12-15b.

12-5. A Comparison Between the Parabolic and Corner Reflector. Al-
though the corner reflector differs in principle from the parabolic reflector,
there are situations in which the two may be nearly equivalent. This

may be illustrated with the aid of Tig.

Cylindrical 12-17. Let a linear antenna be located

parabola Sauere  at the focus F of a cylindrical parabolic

reflector  reflector, and let this arrangement be

compared with a square corner reflector

g of the same aperture and with an an-

tenna-to-corner spacing AF. The

Linear ontenna parabolic and corner reflectors are su-

/ Axis perimposed for comparison in Fig.

A F 12-17. A wave radiated in the positive

y direction from F is reflected at 0 by

the corner reflector and at Q' by the

cylindrical parabolic reflector. Hence,

this wave travels a shorter distance in

the corner reflector by an amount 00,

If AF = 2 ), the electrical length of

00’ is about 180° so that a marked dif-

Frc. 12-17. Cylindrical parabolic re- ierence would be expected in the field

flector compared with square corner patterns of the two reflectors. How-

reflector. " ever, if AF = 0.35 X the electrical

length of 00’ is only about 30° and

this would be expected to cause only a slight difference in the field patterns.

It follows that if AF is small in terms of the wavelength the exact shape

of the reflector is not of great importance. The practical advantage

of the corner reflector is the simplicity and ease of construction of the
flat sides.
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12-6. The Paraboloidal Reflector.’ The surface generated by the revo-
lution of a parabola around its axis is called a paraboloid or a parabola
of revolution. If an isotropic source is placed at the focus of a paraboloidal
reflector as in Fig. 12-18.1a, the portion A of the source radiation that is

Secondary pattern
Axis

Isotropic source pattern
(primary pattern)

s (a)

Tapered illumination

v F

D [

| (%)

I ’
Primary Relative
pattern field intensity
T ™~ \ Tapered illumination

with dashed primary pattern

D \

~
~
~
+8 D ~ \[*Nearly uniform illumination
! /’l\ﬁf with solid primary pattern

Vv L U
\‘//
-6, N Primary 1)
7~
~”

~ patterns 7
/
- L >
Relative field
(¢) intensity

F1e. 12-18.1. Parabolic reflectors of different focal lengths (L) and with sources of
different patterns.

! “Microwave Antenna Theory and Design,’” edited by 8. Silver, McGraw-Hill Book
Company, Inc., New York, 1949,

H. T. Friis and W. D. Lewis, Radar Antennas, Bell System Tech. J., 26, 219-317,
April, 1947.

C. C. Cutler, Parabolic Antenna Design for Microwaves, Proc. I.R.E., 37, 1284-1294,
November, 1947.

J. C. Slater, “Microwave Transmission,” MeGraw-Hill Book Company, Inc., New
York, 1942, pp. 272-276.
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intercepted by the paraboloid is reflected as a plane wave of circular
cross section provided that the reflector surface deviates from a true
parabolic surface by no more than a small fraction of a wavelength.

If the distance L between the focus and vertex of the paraboloid is
an even number of 1 wavelengths, the direct radiation in the axial direc-
tion from the source will be in opposite phase and will tend to cancel the
central region of the reflected wave. However, if

A
L= T (12-12)
where n = 1, 3, 5, . . ., the direct radiation in the axial direction from
the source will be in the same phase and will tend to reinforce the central
region of the reflected wave. Direct radiation from the source can be
eliminated by means of a directional source or primary antenna' as in
Fig. 12-18.1b and ¢.

A primary antenna with the idealized hemispherical pattern shown in
Fig. 12-18.1b (solid curve) results in a wave of uniform phase over the
reflector aperture. However, the amplitude is tapered as indicated. To
obtain a more uniform aperture field distribution or illumination, it is
necessary to make 6, small as suggested in Fig. 12-18.1¢ by increasing the
foeal length L while keeping the reflector diameter D constant.”? If the

/’,
/
Half-wave antenna e
and reflector
Secondary
pattern Horn
; . Secondary
Primary pattern Primary pattern
pattern L
: Horn
i .
) Primary
l‘ pattern
(a) (v d (¢)

F1e. 12-18.2. Parabolic reflectors with various feed arrangements.

source pattern is uniform between the angles 6, as for the solid pattern,
the aperture illumination is then nearly uniform. A typical pattern for
a directional source as indicated by the dashed curve at (¢) gives a more
tapered aperture distribution as shown by the dashed line. The greater

L1t is convenient to refer to the pattern of the source or primary antenna as the
primary pattern and the pattern of the entire antenna as the secondary paitern.

2 That is, by using a reflector system with a larger F number. The F number is the
ratio of the focal distance L to the diameter D (F = L/D),
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amount of taper with resultant reduction in edge illumination may be
desirable in order to reduce the minor-lobe level, this being achieved, how-
ever, at some sacrifice in directivity.

The arrangement of Fig. 12-18.15 illustrates the case of a small ratio of
focal distance L to aperture diameter D. The arrangement at (c) illus-
trates the case of a larger ratio. An extreme example of a parabolic
reflector with large ratio of focal distance to aperture diameter is afforded
by many astronomical telescopes of the reflecting type.

Suitable directional patterns may be obtained with various types of
primary antennas. As examples, a 3-wavelength antenna with a small
ground plane is shown in Fig. 12-18.2a, and a small horn antenna in Fig.
12-18.2b.

The presence of the primary antenna in the path of the reflected wave,
as in the above examples, has two principal disadvantages. These are,
first, that waves reflected from the parabola back to the primary antenna
produce interaction and mismatching." Second, the primary antenna
acts as an obstruction, blocking out the central portion of the aperture.
To avoid both effects, only a portion of the paraboloid can be used and
the primary antenna displaced as in Fig. 12-18.2¢c.

Let us next develop an expression for the field distribution across the
aperture of a parabolic reflector. Since the development is simpler for a

Y
dy dp
R
8
y d B 4@
8 Axis 8 Axis
X
T ] N
Line source Point source
ot focus at focus

(a) (R

Fra. 12-19. Cross sections of eylindrical parabola (a) and of paraboloid of revolu~
tion (b).

cylindrical parabola, this case is treated first, as an introduction to the
case for a paraboloid. Consider a cylindrical parabolic reflector with line
source as in Fig. 12-19a. The line source is isotropic in a plane perpen-

! This may be greatly reduced by using a circularly polarized primary antenna, such
as a helical beam antenna. If the primary antenna radiation is right cireularly polarized,
the wave reflected from the parabola is mostly left circularly polarized and the primary
antenna is insensitive to this polarization.
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dicular to its axis. For a unit distance in the z direction, Fig. 12-19a,
the power W in a strip of width dy is

W = dy P, (12-13)

where P, = the power density at y
But we have also that

W=dat (12-14)
where U’ = the power per unit angle per unit length in the # direction
Thus,

P,dy = U’ do (12-15)
and
p, 1
U’ (d/d6)(R sin 6) (12-16)
where
2L
B =1 s 0 (12-17)
This yields

1t cosf,,

U A (12-18)

The ratio of the power density P, at ¢ to the power density P, at § = 0
is then given by the ratio of (12-18) when 6 = 6 to (12-18) when ¢ = 0,
or

Py 1+ cosé

A (12-19)

Hence, in the aperture plane the field-intensity ratio is equal to the square

root of the power ratio or
E, 1+ cosé :
B "_——_2 (12-20)

where E,/E, is the relative field intensity at a distance y from the axis
as given by ¥ = R sin 6.

Turning now to the case of a paraboloid of revolution with an isotropic
point source as in Fig. 12-19, the total power W through the annular
section of radius p and width dp is

W = 2zpdp P, (12-21)

where P, = the power density at a distance p from the axis
This power must be equal to the power radiated by the isotropic source
over the solid angle 2z sin 8 d8. Thus,

W =2rsin0do U (12-22)
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where U = the radiation intensity (power per unit solid angle)

Then
pdp P, = sin0do U £12-23)
or
P, sin#d
U = o(do/db) (12-24)
. 2L sin 6
where p = Rsin 6 = 1% cos 8
This yields
P, = (—liﬁ‘}ﬂ o (12-25)

The ratio of the power density P, at the angle 8 to the power density
P, at 8 = 01is then
Py, (1 + cosf)’

B 7 (12-26)

Hence, in the aperture plane the field-intensity ratio is equal to the square
root of the power ratio or
E, 1+ cosd
E, 2
where E,/E, is the relative field intensity at a radius p from the axis as
given by p = R sin 6.
12-7. Patterns of Large Circular Apertures with Uniform Illumination.
The radiation from a large paraboloid with uniformly illuminated aperture

(12-27)

Uniform
plane
wave
—
_ Uniform Uniform
L illumination ES | «~illumination
¢ > /r'
o] D ¢
[
oA, 3 .
Relative field Relative field
intensity intensity
Paraboloid
Infinife sheet
(a) (b)

F1a. 12-20  Large paraboloid with uniformly illuminated aperture (a) and equivalent
uniformly illuminated aperture of same diameter D in infinite flat sheet (b)
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is equivalent to that from a circular aperture of the same diameter D in
an infinite metal plate with a uniform plane wave incident on the plate
as in Fig. 12-20. The radiation-field pattern for such a uniformly illumi-
nated aperture can be calculated® by applying Huygens’ principle in a
similar way as done for a rectangular aperture in Chap. 4. The normalized
field pattern E(¢) as a function of ¢ and D is

_ 27 J, [(@D/N) sin ¢]

where D = diameter of aperture
N = free-space wavelength
¢ = angle with respect to the normal to the aperture (Fig. 12-20)
J, = first-order Bessel function
The angle ¢, to the first nulls of the radiation pattern are given by

’%sm o = 3.83 (12-20)

since J,(z) = 0 when z = 3.83. Thus,

. 3.83 . 1.22
¢o = arcesin = 5= = aresin =5 (12-30)
When ¢, is very small (aperture large)
1.22 70
o D, rad = D, deg (12-31)

where D, = D/\ = diameter of aperture, wavelengths
The beam width between first nulls is twice this. Hence for large circular
apertures, the beam width between first nulls is

140 deg (12-32)
A

By way of comparison the beam width between first nulls for a large
uniformly illuminated rectangular aperture or a long linear array is from
(4-149)
115
L. (12-33)

where L, = length of aperture, wavelengths

1 See, for example, J. C. Slater and N. H. Frank, “Introduction to Theoretical
Physics,” McGraw-Hill Book Company, Inc., New York, 1933, p. 325.

Also see “Microwave Antenna Theory and Design,” edited by 8. Silver, McGraw-
Hill Book Company, Inc., New York, 1949, p. 194.

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



Sec. 12-7] REFLECTOR.TYPE ANTENNAS 345

The beam width between half-power points for a large circular aperture
isl
58
D,
These beam widths are summarized and compared with those for horn
antennas in Table 13-1. -
The directivity D of a large uniformly illuminated aperture is given by

(12-34)

D = 4r a;eza (12-35)
Yor a circular aperture
2
D = 4= "5 = 08702 (12-36)

where D, = the diameter of the aperture in wavelengths
The power gain G of a circular aperture over a Z-wavelength dipole an-

tenna is
G = 6D} (12-37)

For example, an antenna with a uniformly illuminated circular aperture
10 wavelengths in diameter has a gain of 600 or nearly 28 db with respect
to a 3-wavelength dipole antenna.
For a square aperture, the directivity is
2
D = 41r§\—l—2 = 12.6L; (12-38)
and the power gain over a i-wavelength dipole is
G = 1713 (12-39)

where I, = the length of a side '
For example, an antenna with a square aperture 10 wavelengths on a side
has a gain of 770 or nearly 29 db over a 3-wavelength dipole.

The above directivity and gain relations are for uniformly illuminated
apertures at least several wavelengths across. If the illumination is
tapered, the directivity and gain are less.

The patterns for a square aperture 10 wavelengths on a side and for a
eircular aperture 10 wavelengths in diameter are compared in Fig. 12-21.
In both cases the field is assumed to be uniform in both magnitude and
phase across the aperture. The patterns are given as a function of ¢ in
the z-y plane. The patterns in the 22 plane are identical to those in the
z-y plane. Although the main-lobe beam width for the circular aperture

1 “Microwave Antenna Theory and Design,” edited by 8. Silver, McGraw-Hill Book
Company, Inc., New York, 1949, p. 194.
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is greater than for the square aperture, the side-lobe level for the circular

aperture is smaller. A similar effect could be produced with the square

aperture by tapering the illumination.
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¢
Fia. 12-21. Relative radiation patterns of circular aperture of diameter D = 10 A and

of square aperture of side length L = 10 A.

12-8. The Cylindrical Parabolic Reflector. The cylindrical parabolic
reflector is used with a line-source type of primary antenna. Two types
are illustrated in Fig. 12-22. Both produce fan beams, that is, a field
pattern that is wide in one plane and narrow in the other. The antenna

Y

/9) X
: L
|wL>”{ (b)

Fia. 12-22. Parabolic reflector with linear array of eight in-phase 3}-wavelength
antennas (a) and ‘‘pillbox™ or “cheese’’ antenna (b).

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



Sec. 12.9] REFLECTOR-TYPE ANTENNAS 347

in Fig. 12-22¢ has a line source of eight in-phase 3-wavelength antennas
and produces a beam that is narrow in the X plane (z-z plane) and wide
in the H plane (z-y plane). The antenna in Fig. 12-22b produces a beam
that is wide in the K plane (z-z plane) and narrow in the H plane (z-y
plane). The primary antenna consists of a driven stub element with a
reflector element. The driven element is fed by a coaxial line. The side
plates act as a parallel plane wave guide. They guide the radiation from
the primary antenna to the parabolic reflector. This type of antenna is
called a “pillbox” or ‘“cheese’’ antenna. If L < A/2, propagation between
the planes is restricted to the principal or TEM mode. In this case the
source may be a stub antenna of length less than 1 wavelength (as in
Fig. 12-22b), or the source may be an open-ended wave guide or small horn.
Negleeting edge effects, the patterns of the antennas of Fig. 12-22 are
those of rectangular apertures of side dimensions L by H. If the illumina-
tion is substantially uniform over the aperture [# small in Eq. (12-20)],
the relations developed for rectangular apertures in Chap. 4 can be applied
to calculate the patterns provided that the side length is large compared
to the wavelength.

12-9. Aperture Distributions. The ficld pattern in the x-y plane from a
line source of length L (Fig. 12-23¢) is identical with the pattern in the
z~y plane from a rectangular aperture of length L (Fig. 12-23b) provided
that both have the same distribution in the y direction. The pattern of
a circular aperture (D = L) with the same distribution will be different
(wider beam width and smaller side lobes). However, the relative effect
of a change in the taper of a distribution is the same in all cases.

A long linear array of discrete closely spaced sources has nearly the
same pattern as a continuous array with the same amplitude and phase
distribution, so that some of the conclusions reached in Chap. 4 can be
extended to flat constant-phase broadside arrays or apertures in general.
To summarize:

1. A uniform amplitude distribution yields the maximum directivity.*

2. Tapering the amplitude from a maximum at the eenter to a smaller
value at the edges reduces the side-lobe level but results in a wider
main lobe and less directivity.

3. A distribution with an inverse taper (amplitude depression at center)?
results in a sharper main lobe but also in an increased side-lobe level
and less directivity.

If the amplitude is decreased gradually to a small valve at the edges of

iBee 8. Silver, op. cit., p. 177; see also T. T. Taylor, Proc. I.R.E., 36, 1135, Sep-
tember, 1948,

*This type of distribution might be inadvertently produced by the primary antenna
blocking out the center of the aperture as discussed in Sec. 12-6.
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the aperture, as in a binomial or Gauss error-curve type of distribution,
the side-lobe level is effectively zero. However, the attendant decrease in
directivity generally makes this kind of
distribution unacceptable. For a prede-
termined side-lobe level the optimum
,—Line source distribution is of the Dolph-Tchebyscheff
/( type. A number of other amplitude dis-
L x  tributions are of some interest, for ex-
ample, the triangular, cosine, and cosine
squared types. These are conveniently

(a) analyzed by the Fourier transform

z method as described in the next section.
In the above discussion it is assumed

Square that the phase is uniform over the aper-
aperture ture. However, if the primary antenna
is displaced from the focus of the parab-

Y

/T/ ola, or if the phase pattern of the primary
(b) antenna is not constant, there will be a

L phase variation over the aperture. This
J/ is usually referred to as a phase error.'
The effects of such phase errors are, in

general, undesirable since increased side-

lobe level and reduced directivity re-

gg:,ﬂlj’r'e sult. The level of the minima between
4@ ’ lobes is also increased.
‘ (¢) In some applications beams of special
Ii' shape are desired that may require distri-
Frc. 12-23. Line source, square ap- Putionshavingboth amplitude and phase
erture, and circular aperture, tapers. In general, a beam of any shape

can be produced by the proper ampli-

tude and phase distribution over an aperture.”
12-10. Fourier Transform Method. The Fourier transform method
provides a convenient procedure for finding the field patterns of certain

1 For a detailed discussion of both amplitude distributions and phase errors see
“Microwave Antenna Theory and Design,” edited by 8. Silver, McGraw-Hill Book
Company, Inc., New York, 1949; also H. T. Friis and W. D. Lewis, Radar Antennas,
Bell System Tech. J., 268, 219-317, April, 1947.

2 Chap. 13 by L. C. Van Atta and T. J. Keary, “Microwave Antenna Theory and
Design,” McGraw-Hill Book Company, Inc., New York, 1949, p. 465. Gives a general
survey of beam-shaping techniques.

Chap. 6 by G. Stavis and A. Dorne, ‘“Very High Frequeney Techniques,” McGraw-
Hill Book Company, Inc., New York, 1947, p. 161. Gives a discussion of elliptical-
parabolic reflectors,
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aperture distributions. Specifically, the field pattern can be formulated
as the Fourier transform of the aperture distribution.

Consider a continuous linear in-phase source of length L or a rectangular
aperture of height I as in Fig. 12-24. It is assumed that the amplitude
distribution is known and that the phase distribution is uniform. It is
further assumed that L >> X so that
the beam width of the main lobe (in Y
z direction) is small. Then it may
be shown that if the amplitude dis-

tribution is given by F(y) the field ‘“'gggfge'iﬂe
pattern as a function of ¢ in the z-y )
plane is given by X
+L/2
B@ =]  F@ e dy (1240 L
—L/z Rectangular
where (12-40) is the Fourier trans- aperture

form of F(y). The distribution fune- -~z

tion F(y) is real if the phase is uni- Fg. 12-24. Line source of height L and
form over the aperture. Further, if rectangular aperture of height L.

the amplitude distribution is sym-

metrical about the center of the aperture (origin in Iig. 12-24), F(y) is
even and the pattern is given by the IFourier cosine transform of F(y).
For example, if the amplitude distribution is uniform, F(y) = 1 and the
field pattern is

_ 2sin [(L, sin ¢)/2] \
k() = 8 5in ¢ (12-41)

The normalized field pattern is
Bg) = 2 sin [(L, sin ¢)/2] (12-42)

L. sin ¢

The field patterns for four types of amplitude distributions (see Ramsay")
are listed in Table 12-2.2

1J. F. Ramsay, Fourier Transforms in Aerial Theory, Marconi Rev., 9, 139, October-
December, 1946.

R. C. Spencer, “Fourier Integral Methods of Pattern Analysis,” M.L.T. Radiation
Laboratory Rep. 762-1, January 21, 1946.

2 For other distributions see “Microwave Antenna Theory and Design,” edited by
8. Silver, McGraw-Hill Book Company, Inc., New York, 1949; also R. C. Spencer,
“Fourier Integral Methods of Pattern Analysis,” M.LT. Radiation Laboratory Rept.
762-1, January 21, 1946.
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TABLE 12-2*

Type of distribution )
Field pattern
Name Shape Forinula (normalized)
+& :
Uniform _ __2_ _ 1 E{L&&M
. (L, sin ¢)/2]
‘ + % . . 2
Triangular | - L 2[__[(._L_M}
L L L, sin ¢
T2
4
2 .
Cosine U 5 YO cos Y (71'/2)2 cos [(L, sin ¢)/2]2
L L @/2)" — (L, sin ¢)/2]
2
. +5
Cosine 2 o2 ™ in [ sin $)/2] 2
squared "L - s T L sin ¢ 1 — (L. sin ¢)%/4r7]
Tz
*L, = length of array or aperture in radians
= 2w (L/N\)
¢ = angle from the normal to the array or aperture (Fig. 12-24)

PROBLEMS

12-1. Calculate and plot the radiation pattern of a -wavelength dipole antenna
spaced 0.15 wavelength from an infinite flat sheet for assumed antenna loss resist-
ances B, = 0 and 10 ohms. Express the patterns in gain over a 3-wavelength
dipole antenna in free space with the same power input (and zero loss resistance).

12-2, A square-corner reflector has a driven %-wavelength dipole antenna spaced
0.5 wavelength from the corner. Assume perfectly conducting sheet reflectors of
infinite extent (ideal reflector). Calculate and plot the radiation pattern in a plane
at right angles to the driven element.

12-3. Calculate and plot the pattern of an ideal square-corner reflector with
}-wavelength driven antenna spaced 0.5 wavelength from the corner but with
the antenna displaced 20° from the bisector of the corner angle. The pattern teo

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



REFLECTOR-TYPE ANTENNAS 351

be calculated is in a plane perpendicular to the antenna and to the reflecting sides.

12-4. Calculate and plot the radiation patterns of a paraboloidal reflector with
uniformly illuminated aperture when the diameter is 8 wavelengths and when the
diameter is 16 wavelengths.

12-5. Calculate the radiation pattern of a cylindrical parabolic reflector of
square aperture 16 wavelengths on a side when the illumination is uniform over the
aperture and when the field intensity across the aperture follows a cosine variation
with maximum intensity at the center and zero intensity at the edges. Compare the
two cases by plotting the normalized curves on the same graph.

12-6. a. Calculate and plot the pattern of a 90° corner reflector with a thin
center-fed 3-wavelength driven antenna spaced 0.35 wavelength from
the corner. Assume that the corner reflector is of infinite extent.

b. Calculate the radiation resistance of the driven antenna.
¢. Calculate the gain of the antenna and corner reflector over the antenna
alone. Assume that losses are negligible.

12-7. Assume that the corner reflector of Prob. 6 is removed and that in its place
the three images used in the analysis are present physically resulting in a four-ele-
ment driven array.

a. Calculate and plot the pattern of this array.
b. Calculate the radiation resistance at the center of one of the antennas.
¢. Calculate the gain of the array over one of the antennas alone.

12-8. Four 90° corner-reflector antennas are arranged in line as a broadside array.
The corner edges are parallel and side by side as in the figure. The spacing between
corners is 1 wavelength. The driven antenna in each corner is a }-wavelength
element spaced 0.4 wavelength from the corner. All antennas are energized in phase

Driven
element

_>1

%
t

fe—

and have equal current amplitude. Assuming that the properties of each corner are
the same as if its sides were of infinite extent, what is

a. the gain of the array over a single 3-wavelength antenna?

b. the half-power beam width in the H plane?

12-9. Show that the variation of field across the aperture of a paraboloidal re-
flector with an isotropic source is proportional to 1/(1 4 (o/2L)*) where p is the
radial distance from the axis of the paraboloid. Show that this relation is equivalent
to (1 4 cos 6)/2.
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12-10. a. Show that the relative field pattern in the plane of the driven 3-wave-
length element of a square corner reflector is given by

cos (90° cos 6)

E = [1 — cos (8, sin 6)] im0
1

where 8 is the angle with respect to the element axis. Assume that the
corner-reflector sheets are perfectly conducting and of infinite extent.

b. Calculate and plot the field pattern in the plane of the driven element
for a spacing of 3 wavelength to the corner. Compare with the pattern
at right angles (Prob. 12-2).
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CHAPTER 13

SLOT, HORN, AND COMPLEMENTARY ANTENNAS

13-1. Slot Antennas. The antenna shown in Fig. 13-la, consisting of
two resonant i-wavelength stubs connected to a two-wire transmission
line, forms an inefficient radiator. The long wires are closely spaced
(w << A) and carry currents of opposite phase so that their fields tend to

Metal sheet

Sy
N
-

(@) // ()

Fie. 13-1. Parallel connected i-wavelength stubs (a) and simple slot antenna (b).

cancel. The end wires carry currents in the same phase, but they are too
short to radiate efficiently. Hence, enormous currents may be required
to radiate appreciable amounts of power.

The antenna in Fig. 13-1b, on the other hand, is a very efficient radiator.
In this arrangement a j-wavelength slot is cut in a flat metal sheet.
Although the width of the slot is small (w <« A), the currents are not con-
fined to the edges of the slot but spread out over the sheet. This is a
simple type of slot antenna. Radiation occurs equally from both sides
of the sheet. If the slot is horizontal, as shown, the radiation normal to
the sheet is vertically polarized.

A slot antenna may be conveniently energized with a coaxial transmis-
sion line as in Fig. 13-2a. The outer conductor of the cable is bonded to
the metal sheet. Since the terminal resistance at the center of a resonant
3-wavelength slot in a large sheet is about 500 ohms and the characteristic
impedance of coaxial transmission lines is usually much less, an off-center
feed such as shown in Fig. 13-26 may be used to provide a better im-

353
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pedance match. For a 50-ohm coaxial cable the distance s should be
about w4 wavelength. Slot antennas fed by a coaxial line in this manner
are illustrated in Fig. 13-2¢ and d. The radiation normal to the sheet with
the horizontal slot (Fig. 13-2¢) is vertically polarized while radiation normal
to the sheet with the vertical slot (Fig. 13-2d) is horizontally polarized.
The slot may be 3 wavelength long, as shown, or more.

A flat sheet with a 3-wavelength slot radiates equally on both sides of
the sheet. However, if the sheet is very large (ideally infinite) and boxed
in as in Fig. 13-3a, radiation occurs only from one side. If the depth d

4

. %%

to sheet

polarized

slot Horizontally
antenna polarized
slot
( C) ( d) antenna

Frc. 13-2. Slot antennas fed by coaxial transmission lines.

of the box is appropriate (d ~ A/4 for a thin slot), no appreciable shunt
susceptance appears across the terminals. With such a zero susceptance
box, the terminal impedance of the resonant 3-wavelength slot is non-
reactive and approximately twice its value without the box or about 1,000
ohms.

The boxed-in slot antenna might be applied even at relatively long
wavelengths' by using the ground as the flat conducting sheet and exca-

1H. G. Booker, Slot Aerials and Their Relation to Complementary Wire Aerials,
7.I.E.E. (London), 93, Part IIIA, No. 4, 1946.
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vating a trench 3 wavelength long by 1 wavelength deep as suggested in
Fig. 13-3b. The absence of any structure above the ground level might
make this type of antenna attractive, for example, in applications near
airports. To improve the ground conductivity, the walls of the trench

AMax " Min
Z
PV
il
Mox, - > F~Max.
<
<~ —
y SN — ///
——Ground ///1
{ %
Min. '}} l////L
R RRerg ¢
[P
(a) (b)

Fic. 13-3. Boxed-in slot antenna (a) and application to provide flush radiator (b)-

and the ground surrounding the slot can be covered with copper sheet or
screen. Radiation is maximum in all directions at right angles to the slot
and is zero along the ground in the directions of the ends of the slot as

T Front view
IH I i
N -
~ - le |
T Nwave guide | L "
} Side
view
(a) (%

Fig. 13-4. Wave-guide fed slot (a) and T-fed slot (b).

suggested in Fig. 13-3b. The radiation along the ground is vertically

polarized.
Radiation from only one side of a large flat sheet may also be achieved
oy a slot fed with a wave guide as in Fig. 13-4a. With transmission in the
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guide in the TE;; mode the direction of the electric field E is as shown.
The width L of the guide must be more than 3 wavelength to transmit
energy, but it should be less than 1 wavelength to suppress higher order
transmission modes. With the slot horizontal, as shown, the radiation
normal to the sheet is vertically polarized. The slot opening constitutes
an abrupt termination to the wave guide. It has been found' that the
resulting impedance mismatch is least over a wide frequency band if the
ratio L/w is less than 3.

A compact wide-band method for feeding a boxed-in slot is illustrated
in Tig. 13-4b. In this T-fed arrangement’ the bar compensates the im-
pedance characteristics so as to provide a SWR on a 50-ohm feed line of
less than 2 over a frequency range of nearly 2 to 1. The ratio L/w of the
length to width of the slot is about 3.

Dispensing with the flat sheet altogether, an array of slots may be cut

F1a. 13-5. Broadside array of slots in wave guide.

in the wave guide as in Fig. 13-5 so as to produce a directional radiation
pattern.” With transmission in the guide in the TE,, mode, the instan-
taneous direction of the electric field E inside the guide is as indicated by
the dashed arrows. By cutting inclined slots as shown at intervals of
A./2 (where A, is the wavelength in the guide), the slots are energized in
phase and produce a directional pattern with maximum radiation broad-
side to the guide. If the guide is horizontal and E inside the guide is
vertical, the radiated field is horizontally polarized as suggested in Fig. 13-5.

13-2. Patterns of Slot Antennas in Flat Sheets. Consider the horizontal
1-wavelength slot antenna of width w in a perfectly conducting flat sheet
of infinite extent as in Fig. 13-6a. The sheet is energized at the terminals
FF. It hasbeen postulated by Booker that the radiation pattern of the slot
is the same as that of the complementary horizontal j-wavelength dipole

1Chap. 7 by A. Dorne and D. Lazarus, “Very High Frequency Techniques,” Radio
Rescarch Laboratory Staff, McGraw-Hill Book Company, Inc., New York, 1947,

' W. H. Watson, ‘“The Physical Principles of Wave Guide Transmission and Antenna
Systems,” Oxford University Press, London, 1947.

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



Sec. 13-2] SLOT AND HORN ANTENNAS 357

consisting of a perfectly conducting flat strip of width w and energized at
the terminals FF as indicated in Fig. 13-6b but with two differences.
These are (1) that the electric and magnetic fields are interchanged and
(2) that the component of the electric field of the slot normal to the sheet,

—

(b
Fia. 13-6. %-wavelength slot in infinite flat sheet (a) and complementary 3~wavelength
dipole antenna (b).

18 discontinuous from one side of the sheet to the other, the direction of
the field reversing. The tangential component of the magnetic field is,
iikewise, discontinuous.

The patterns of the i-wavelength slot and the complementary dipole are

H, o« ¥4 4
- Slot in sheetin
e x-z plane

(a) (2)

Fra. 13-7. Radiation field patterns of slot in infinite sheet (a) and of complementary
dipole antenna (b).

compared in Fig. 13-7. The infinite flat sheet is coincident with the z-z
plane, and the long dimension of the slot is in the z direction (Fig. 13-7a).
The complementary dipole is coincident with the z axis (Fig. 13-7b). The
radiation-field patterns have the same doughnut shape, as indicated, but
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the directions of E and H are interchanged. The solid arrows indicate the
direction of the electric field E and the dashed arrows the direction of
the magnetic field H.

If the z-y plane in Fig. 13-7a is horizontal and the z axis vertical, the
radiation everywhere in the z-y plane from the horizontal slot is vertically
polarized. Turning the slot to a vertical position (coincident with the
z axis) rotates the radiation pattern through 90° to the position shown in

Slot in sheet in
x-Z plane

o

X s

|
:
v
Frc. 13-8. Radiation pattern of vertical slot in infinite flat sheet.

Fig. 13-8. The radiation in this case is everywhere horizontally polarized.
That is, the electric field has only an E, component. If the slot is very
thin (w <« A) and % wavelength long (L = A/2), the variation of F, as a
function of 6 is from (5-84) given by

cos [(r/2) cos 6]

E6) = sin

(13-1)
Assuming that the sheet is perfectly conducting and infinite in extent, the
magnitude of the field component £, remains constant as a function of ¢
for any value of §. Thus,

E,(¢) = constant (13-2)

Consider now the situation where the slot is cut in a sheet of finite
extent, as suggested by the dashed lines in Fig. 13-8. This change produces
relatively little effect on the E,(f) pattern given by (13-1). However, there
must be a drastic change in the £,(¢) pattern since in the z direction, for
example, the fields radiated from the two sides of the sheet are equal in
magnitude but opposite in phase so that they cancel. Hence, there is a
null in all directions in the plane of the sheet. For a sheet of given length
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L in the z direction the field pattern in the z-y plane might then be as
indicated by the solid curve in Fig. 13-9a. The dashed curve is for an

Sheet

(a) (d)
Fic. 13-9. Solid curves show patterns in z-y plane for slot in finite sheet of length L.

Slot is open on both sides in (a) and closed on left side in (b). Dashed curves show
pattern for infinite shect. All patterns idealized.

infinite sheet (I. = «). If one side of the slot is boxed in, there is radiation
in the plane of the sheet as suggested by the pattern in Fig. 13-9b.!
With a finite sheet the pattern usually exhibits a scalloped or undulating

.

T16. 13-10. Measured ¢-plane patterns of 3-wavelength boxed-in slot antennas in
finite sheets of three lengths L = 0.5, 2.75, and 5.3 wavelengths. The width of the
slots is 0.1 wavelength. (After Dorne and Lazarus.)

! According to H. G. Booker, Slot Aerials and Their Relation to Complementary
Wire Acrials, J.I.E.E. (London), 93, Part I11A, No. 4, 1946, the energy density in the

¢ = 0% or 180° directions is } that for an infinite sheet or the field intensity is 0.707
that for an infinite sheet.
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characteristic as suggested in Fig. 13-9. As the length L of the sheet is
increased, the pattern undulations become more numerous but the magni-
tude of the undulations decreases so that
for a very large sheet the pattern con-
forms closely to a circular shape. Meas-
ured patterns’ illustrating this effect are
shown in Fig. 13-10 for three values of L.
A method due to Alford for loeating the
angular positions of the maxima and
minima is deseribed by Dorne and Laza-
rus.’ In this method the assumption is
made that the far field is produced by
three sources (see Fig. 13-11), one (1) at
the slot of strength 1 sin wf and two (2
and 3) at the edges of the sheet with a
strength k& sin (wt — 8) where k << 1 and
Fre. 13.11. Construction for locat- gives th.e phase difference of the edge
ing maxima and minima of ¢ pattern SOUrces with respect to the source (1) at
for slot in a finite sheet. the slot. At the point P at a large dis-

tance in the direction ¢ the relative field

To point P

intensity is then
E=sinot+ kein (wt— 86— ¢ + ksin (wi — 5§+ ¢ (13-3)

where ¢ = (x/\) L cos ¢
By trigonometric expansion and rearrangement

E = (1 4 2k cos 8 cos €) sin wt — (2k sin 6 cos €) cos wt  (13-4)

and the modulus of % is

|E| = /(1 + 2k cos & cos )” + (2 sin & cos ¢)° (13-5)

Squaring and neglecting terms with k*, since k < 1, (13-5) reduces to

|E | = A/1 + 4k cos & cos e (13-6)

The maximum and minimum values of | £ | as a function of ¢ occur when
e = nm, so that

e = ’{L cos¢ = nr (13-7)
1 Chap. 7, by A. Dorne and D. Lazarus, “Very High Frequency Techniques,” Radio

Research Laboratory Staff, McGraw-Hill Book Company, Inc., New York, 1947 (see
Sec. 7-3)
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where 7 is an integer. Thus

cos ¢ = n__Ii\ and ¢ = arccosnf)\ (13-8)

The values of ¢ for maxima and minima in the ¢ pattern are given by (13-8).
These loeations are independent of % and 8. If cos § is positive, then the
maxima correspond to even values of n and the minima to odd value of #.

13-3. Babinet’s Principle and Complementary Antennas. By means of
Babinet’s prirciple many of the problems of slot antennas can be reduced

A

Plane of
Piane af screens observation
]

) Screen
Source

Complementary},

screen
1 Shadow

_———//J‘

SoJrce< \J o

L}
Source Case 3

z No screen

Y
X

Fra. 13-12. Optical illustration of Babinet’s principle.

to situations involving complementary linear antennas for which solutions
have already been obtained. In optics Babinet’s principle’ may be stated
ag follows:

! See, for example, Max Born, “Optik,” Verlag Julius Springer, Berlin, 1933, p. 155
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The field at any point behind a plane having a screen, if added to the field
ol the same point when the complementary screen 18 substituted, is equal to
the field at the poinl when no screen is present.

The principle may be illustrated by considering an example with three
cases. Let a source and two imaginary planes, plane of sereens A, and
plane of observation B, be arranged as in Fig. 13-12. As Case 1, let a
perfectly absorbing screen be placed in plane :A. Then in plane B there
is a region of shadow as indicated. TLet the field behind this screen be
some function f, of z, y, and z. Thus,

Fa = fl(x) Y, 2,) (13'9)

As Case 2 let the first sereen be replaced by its complementary screen and
the field behind it be given by

Fo.=fi(z,y,2) (13-10)
As Case 3 with no screen present the field is

Fo = fi(z, 9, 2). (13-11)
Then, Babinet’s principle asserts that at the same point z;, ¥, 2;

F.+F..=F, (13-12)

The source may be a point as in the above example or a distribution of
sources. The principle applies not only to points in the plane of observa-
tion B as suggested in Fig. 13-12 but also to any point behind screen A.
Although the principle is obvious enough for the simple shadow case
above, it also applies where diffraction is considered.

Babinet’s principle has been extended and generalized by Booker' to
take into account the vector nature of the electromagnetic field. In this
extension it is assumed that the screen is plane, perfectly conducting, and
infinitesimally thin. TFurthermore, if one screen is perfectly conducting
(¢ = =), the complementary screen must have infinite permeability
(u = ). Thus, if one screen is a perfect conductor of electricity, the com-
plementary sereen is a perfector “conductor’” of magnetism. No infinitely
permeable material exists, but the equivalent effect may be obtained
by making both the original and complementary screens of perfectly
conducting material and interchanging electric and magnetic quantities
everywhere. Although no perfect conductors of electricity exist, many
metals, such as silver and copper, have so high a conductivity that we
may assume the conductivity is infinite with a negligible error in most
applications..

1H. G. Booker, Slot Aerials and Their Relation to Complementary Wire Aerials,
J.I.LE.E. (London), 93, Part ITTA, No, 4, 1946.
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As an illustration of Booker’s extension of Babinet’s principle, consider
the cases in Fig. 13-13. The source in all cases is a short dipole. In
Case 1 the dipole is horizontal, and the original screen is an infinite, per-
fectly conducting, plane, infinitesimally thin sheet with a vertical slot cut
out as indicated. At a point P behind the screen the field is E,. In
Case 2 the original screen is replaced by the complementary screen con-

’ Slot
—\ q E, Case
[}
Source \
S,
Ao
_ “
_,‘ E,
strie Case 2

;\ w Case 3

Fig. 13-13. Tllustration of Babinet’s principle applied to a slot in an infinite metal
sheet and the complementary metal strip.

sisting of a perfectly conducting, plane, infinitesimally thin strip of the
same dimensions as the slot in the original screen. In addition the dipole
source is turned vertical so as to interchange E and H. At the same
point P behind the screen the field is E,. As an alternative situation for
Case 2 the dipole source is horizontal, and the strip is also turned hori-
zontal. Finally, in Case 3 no screen is present, and the field at point P

is £y Then, by Babinet’s principle
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El + Ez = Eo (13'13)
or

B, B _

Bt (13-14)

Babinet’s principle may also be applied to points in front of the screens.
In the situation of Case 1 (Fig. 13-13) a large amount of energy may be
transmitted through the slot so that the field E; may be about equal to
the field E, with no intermediate screen (Case 3). In such a situation
the complementary dipole acts like a reflector, and E, would be very
small. The fact that a metal sheet with a }-wavelength slot, or, in general,
an orifice of at least 1 wavelength perimeter, may transmit considerable
energy, means that slots or orifices of this size should be assiduously
avoided in sheet reflectors such as described in Chap. 12 when E is not
parallel to the slot.

13-4. The Impedance of Complementary Screens. In this section Babi-
net’s principle is applied with the aid of a transmission-line analogy to
finding the relation between the surface impedance Z, of a screen and the
surface impedance Z, of the complementary metal screen.'

Consider the infinite transmission line shown in Fig. 13-14a of char-
acteristic impedance Z, or characteristic admittance ¥, = 1/Z,. Let a
shunt admittance Y, be placed across the line. An incident wave traveling
to the right of voltage V', is partly reflected at Y, as a wave of voltage V,
and partly transmitted beyond Y, as a wave of voltage V,. The voltages
are measured across the line.

This situation is analogous to a plane wave of field intensity E; incident
normally on a plane screen of infinite extent with a surface admittance,
or admittance per square, of Y,. That is, the admittance measured
between the opposite edges of any square section of the sheet as in Fig.
13-14¢ is Y,. Neglecting the impedance of the leads the admittance

Y, = I mhos (per square) (13-15)

v
The value of Y is the same for any square section of the sheet. Thus, the
section may be 1 cm square or 1 meter square. Hence, (13-15) has the
dimensions of admittance rather than of admittance per length squared
and is called a surface admittance, or admittance per square. The field
intensities of the waves reflected and transmitted normally to the screen
are E, and E,. Let the medium surrounding the screen be free space. It
has a characteristic admittance Y, which is a pure conductance G,. Thus,

1The treatment follows that given by H. G. Booker. See Slot Aerials and Their Rela-
tion to Complementary Wire Aerials, J.I.E.E. (London), 93, Part ITIA, No. 4, 1946.
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Yo=5 =55 =06 (13-16)

The ratio of the magnetic to the electric field intensity of any plane
traveling wave ia free space has this value. Hence,

Yo = gt = —pt =2 (13-17)

where H,, H., and H, are the magnetic field intensities of the incident,
reflected, and transmitted waves, respectively.

Vi Vi Wi
—- —~—
% %
(2)
- E; Er | Ex
—— ~— [ —~
Incident | .
plane
wave
—
—_—
—_— Y (b)

Screen

Fic. 13-14. Shunt admittance across transmission line () is analogous to infinite
screen in path of plane wave (b). Method of measuring surface admittance of screen
is suggested in (c).

The transmission coefficient for voltage r, of the transmission line'
(Fig. 13-14q) is
|4 2Y
T, = ot = o — (13-18)
Ve 2Y,+ T,
L8ee, for example, S. A. Schelkunoff, “Electromagnetic Waves,”” D. Van Nogtrand
Company, Ine., New York, 1943, p. 212.
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By analogy the transmission coefficient for the electric field (Fig. 13-14b) is
E, 27,

E.” 2Y,+ Y,

(13-19)

TE

If now the original screen is replaced by its complementary screen with an
admittance per square of Y,, the new transmission coefficient is the ratio
of the new transmitted field E{ to the incident field. Thus,

, B 27,

TR T 1320
Applying Babinet’s principle, we have from (13-14) that
B B
7, + 7= 1 (13-21)
or
5+ 15 =1 (13-22)
Therefore,
27, 2y,
5, v, Tav, + v, T (13-230)
and we obtain Booker’s result that
Y.V, = 4V, (13-23b)
Sinece Y, = 1/Z,,Y, = 1/Z,, and Y, = 1/Z,,
2 ——
4,7, = %9 or '\/er2 = % (13-24a)

Thus, the geometric mean of the impedances of the two screens equals
one-half the intrinsic impedance of the surrounding medium. Since, for
free space, Z, = 376.7 ohms,

35,476
Z, = 7

ohms (13-24b)

If screen 1 is an infinite grating of narrow parallel strips as in Fig. 13-15a,
then the complementary screen (screen 2) is an infinite grating of narrow
slots as shown in Fig. 13-15b. Suppose that a low-frequency plane wave
is incident normally on screen 1 with the electric field parallel to the strips.
Then the grating acts as a perfectly reflecting screen and zero field pene-
trates to the rear. Thus Z, = 0 and from (13-24b) Z, = o so that the
complementary screen of slots (screen 2) offers no impediment to the
passage of the wave. If the frequency is increased sufficiently, screen 1
begins to transmit part of the incident wave. If at the frequency F,
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screen 1 has a surface impedance Z; = 7188 ohms per square, the impe-
dance Z, of screen 2 is —;188 ohms per square so that both screens transmit
equally well. If screen 1 becomes more transparent (Z; larger) as the
frequency is further increased, screen 2 will become more opaque (Z.

Screenl (strips) . Scrf/en 2 (slots)

7

(a) (b)

Fia. 13-15. Screen of parallel strips (a) and complementary screen of slots (b).

smaller). At any frequency the sum of the fields transmitted through
screen 1 and through screen 2 is a constant and equal to the field without
any screen present.

13-5. The Impedance of Slot Antennas. In this section a relation is de-
veloped for the impedance Z, of a slot antenna in terms of the impedance
Z, of the complementary dipole antenna." Knowing Z, for the dipole,
the impedance Z, of the slot can then be determined.

Consider the slot antenna shown in Fig. 13-16a and the complementary
dipole antenna shown in Fig. 13-16b. The terminals of each antenna are
indicated by FF, and it is assumed that they are separated by an in-
finitesimal distance. It is assumed that the dipole and slot are cut from
an infinitesimally thin, plane, perfectly conducting sheet. '

Let a generator be connected to the terminals of the slot. The driving-
point, impedance Z, at the terminals is the ratio of the terminal voltage
V., to the terminal current 7,. Let E, and H, be the electric and magnetic
fields of the slot at any point P. Then the voltage V, at the terminals FF
of the slot is given by the line integral of E, over the path C, (Fig. 13-16a)
as C, approaches zero. Thus,

V, = lim E, - dl (18-25)
C10 YOy

where dl = an infinitesimal vector element of length along the contour or
path C,

1 The treatment follows that given by H. G. Booker, Slot Aerials and Their Relation
to Complementary Wire Aerials, J.J.E.E. (London), 93, Part IITA, No. 4, 1946 with
minor embellishments suggested by V. H. Rumsey.
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The current I, at the terminals of the slot is
I, = 2lim H, -dl (13-26)
Ca,—-0 YCa

The path C, is just outside the metal sheet and parallel to its surface.
The factor 2 enters because only one-half the closed line integral is taken,
the line integral over the other side of the sheet being equal by symmetry.

0

(a) (b)

Fra. 13-16. Slot antenna and complementary dipole antenna.

Turning our attention to the complementary dipole antenna, let a gene-
rator be connected to the terminals of the dipole. The driving-point
impedance Z, at the terminals is the ratio of the terminal voltage V., to
the terminal current I,. Let E; and H, be the electric and magnetic fields
of the dipole at any point P. Then the voltage at the dipole terminals is

Vi=lim [ E -dl (13-27)
C3—0 ¥ Oy
and the current is
C1—0 Y Gy
But
li - dl = Z, 1 - g
Clir_r'xo . E,-dl o nglo o H, 1 (13-20)
and
i [ H,odl=im [ E-a (13-30)
Ci,—0 YOy Y Oy YO
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where Z, is the intrinsic impedance of the surrounding medium. Substi-
tuting (13-27) and (13-26) in (13-29) yields

v.=21, (13-31)
Substituting (13-28) and (13-25) in (13-30) gives
v, =21, (13-32)
Multiplying (13-31) and (13-32) we have
%%=% (13-33)
or
2,2, = %‘; or Z, = ZZZ'% (13-34)

Thus, we obtain Booker’s result that the terminal impedance Z, of a slot
antenna is equal to  of the square of the intrinsic impedance of the sur-
rounding medium divided by the terminal impedance Z, of the comple-
mentary dipole antenna. For free space Z, = 376.7 ohms, so
7 = Zy _ 35,476
* 4Zd Zd
The impedance of the slot is proportional to the admittance of the dipole,
or vice versa. Since, in general, Z, may be complex, we may write

_ 35476 _ 35476
R, + X, R:+ X;

where R,; and X, are the resistive and reactive components of the dipole
terminal impedance Z,. Thus, if the dipole antenna is inductive, the slot
is capacitative and vice versa. Lengthening a 3-wavelength dipole makes
it more inductive, but lengthening a 3i-wavelength slot makes it more
capacitative.

Let us now consider some numerical examples proceeding from known
dipole types to the complementary slot types. The impedance of an
infinitesimally thin }-wavelength antenna (L = 0.5 A and L/D = o) is
73 4+ j742.5 ohms (see Chap. 10). Therefore, the terminal impedance of

ohms’ (13-35)

Z, (Ra — jXJ) (13-36)

1If the intrinsic impedance Zy of free space were unknown, (13-35) provides a
means of determining it by measurements of the impedance Z, of a slot antenna and
the impedance Z; of the complementary dipole antenna. The impedance Z, is twice
the geometric means of Z, and Z; or

Zy =2V Z2Zy (18-37)
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an infinitesimally thin J-wavelength slot antenna (L = 0.5 A and
L/w = &) is
35,476 )
1= 7 T 425 = 363 — 7211 ohms

See Fig. 13-17a.

Half-wave dipole Half-wave slot

7
———l
(a)

- =363-] -0

Lo [ 5 ////
Resonant half-wave dipole / Resonant half-wave slot
l‘—L-O-475X—>i 7 L=0. 475)\//‘/*4¢

/

D=i5o 0-005 o 530/10 ///

“Full wave" dipole "Full wave" slot

L=0.925A ———>] /j/w/// 4 45)‘// ;/z/

(c)/ ///vaw—zo//V /
Z=710+j0 // ////////

Fie. 13-17. Comparison of impedances of cylindrical dipole antennas with comple-
mentary slot antennas.

D= —"30 033X

As another more practical example, a cylindrical antenna with a length-
to-diameter ratio of 100 (L/D = 100) is resonant when the length is about
0.475 wavelength (L = 0.475)). The terminal impedance is resistive and
equal to about 67 ohms. The terminal resistance of the complementary
slot antenna is then

35,476
67

Z, = = 530 + jO ohms

See Fig. 13-17b.
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The complementary slot has a length L = 0.475 A, the same as for the
dipole, but the width of the slot should be twice the diameter of the cylin-
drical dipole. As indicated in Sec. 9-7, a flat strip of width w is equivalent
to a cylindrical conductor of diameter D provided that w = 2D. Thus,
in this example, the width of the complementary slot is

2L 2 X 0475\
w—2D—100— 100 ~ 0.01 A

As a third example, a cylindrical dipole with an L/D ratio of 28 and
length of about 0.925 wavelength has a terminal resistance of about
710 4+ jO ohms. The terminal resistance of the complementary slot is
then about 50 -+ ;70 ohms so that an impedance match will be provided
to a 50-ohm coaxial line. See Fig. 13-17c.

If the slots in these examples are enclosed on one side of the sheet with
a box of such size that zero susceptance is shunted across the slot terminals,
due to the box, the impedances are doubled.

The band width or selectivity characteristics of a slot antenna are
the same as for the complementary dipole. Thus, widening a slot (smaller
L/w ratio) increases the band width of the slot antenna the same as in-
creasing the thickness of a dipole antenna (smaller L/D ratio) increases
its band width.

The above discussion of this section applies to slots in sheets of infinite
extent. If the sheet is finite, the impedance values are substantially the
same provided that the edge of the sheet is at least a wavelength from
the slot. However, the measured slot impedance is sensitive to the nature
of the terminal connections.

13-6. Horn Antennas. Several types of horn antennas are illustrated in
Fig. 13-18. Those in the left column are rectangular horns. All are
energized from rectangular wave guides. Those in the right column are
circular types. To minimize reflections of the guided wave, the transition
region or horn between the wave guide at the throat and free space at
the aperture could be given a gradual exponential taper as in Figs. 13-18a
or ¢. However, it is the general practice to make horns with straight
flares as suggested by the other types in Fig. 13-18. The types in Fig. 13-
18b and ¢ are sectoral horns. They are rectangular types with a flare in
only one dimension. Assuming that the rectangular wave guide is ener-
gized with a TE,, mode wave electric field (E in y direction), the horn in
Fig. 13-18b is flared out in a plane perpendicular to E. This is the plane
of the magnetic field H. Hence, this type of horn is called a sectoral
horn flared in the H plane or simply an H-plane sectoral horn. The horn
in Fig. 13-18c¢ is flared out in the plane of the electric field E, and, hence,
it s called an I-planc sectoral horn. A rectangular horn with flare in both
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planes, as in Fig. 13-18d4, is called a pyramidal horn. With a TE,, wave in
the wave guide the magnitude of the electric field is quite uniform in the
y direction across the apertures of the horns of Figs. 13-18b, ¢ and d but
tapers to zero in the x direction across the apertures. This variation is
suggested by the arrows at the apertures in Figs. 13-18b, ¢, and d. The

RECTANGULAR HORNS CIRCULAR HORNS
Ho
Wave
quides(
Throat ‘
(a) Exponentially tapered pyramidal (e) Exponentiolly tapered
Y x
L; — -
> \
(b) Sectoral H-plane (f) conical

i

(d) Pyramidal (h)TE, biconical

F16. 13-18. Types of rectangular and circular horn antennas,

arrows indicate the direction of the electric field E, and their length gives
an approximate indication of the magnitude of the field intensity. For
small flare angles the field variation across the aperture of the rectangular
horns is similar to the sinusoidal distribution of the Tk,, mode across
the wave guide.
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The horn shown in Fig. 13-18f is a conical type. When excited with a
circular guide carrying a TE,; mode wave, the electric field distribution
at the aperture is as shown by the arrows. The horns in Fig. 13-187 and h
are biconical types. The one in Fig. 13-18¢ is excited in the TEM mode
by a vertical radiator while the one in Fig. 13-18% is excited in the TE,,
mode by a small horizontal loop antenna. These biconical horns are non-
directional in the horizontal plane.

Neglecting edge effects, the radiation pattern of a horn antenna can be
determined if the aperture dimensions and aperture field distribution are
known. For a given aperture the directivity is maximum for a uniform
distribution. Variations in the magnitude or phase of the field across the
aperture decrease the directivity. Since the H-plane sectoral horn (Fig.
13-18b) has a field distribution over the x dimension which tapers to zero
at the edge of the aperture, one would expect a pattern in the z-z plane
relatively free of minor lobes as compared to the y-z plane pattern of an
E-plane sectoral horn (Fig. 13-18c¢) for which the magnitude of E is quite
constant over the y dimension of the aperture. This is borne out experi-
mentally.

To obtain as uniform an aperture distribution as possible, a very long
horn with a small flare angle is required. However, from the standpoint
of practical convenience the horn should be as short as possible. An
optimum horn is between these extremes and has the minimum beam width
without excessive side-lobe level for a given length.

Consider the longitudinal section through a horn antenna of Fig. 13-19,

F1a. 13-19. Construction for finding path difference 8.

The axial length of the horn is L, the aperture is A, and the total flare
angle is ¢,. The length § is the difference in path length for a wave
reaching the aperture at the axis and one reaching the aperture at the side
of the horn. If 6 is a sufficiently small fraction of a wavelength, the field
is nearly uniform over the entire aperture. For a constant length L the
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directivity of the horn increases (beam width decreases) as the aperture
A and flare angle ¢, are increased. However, if A and ¢, become so large
that ¢ is equivalent to 180 electrical degrees, the field at the edge of the
aperture is in phase opposition to the field at the axis. Ior all but very
large flare angles the ratio L/L + § is so nearly unity that the effect of
the additional path length & on the distribution of the field magnitude
can be neglected. However, when § = 180° the phase reversal at the
edges of the aperture reduces the directivity (increases side lobes).” It
follows that the maximum directivity occurs at the largest flare angle for
which & does not exceed a certain value (8,). Thus, the optimum horn
dimensions can be related by

L
b = m -~ L (13-38)
or
9 cos (#0/2)
L= 1 — cos (¢o/2) (13-39)
or
= 2 arcco L__ (13-40)
o = ‘rC('SL-I—Bo -

It turns out that the value of 8, must usually be in the range of 0.1 to
0.4 free-space wavelength." Suppose that for an optimum horn 8, = 0.25
and that the axial length L = 10 X\. Then from (13-40), ¢, = 26°. This
flare angle then results in the maximum directivity for a 10-wavelength
horn,

The path length, or & effect, discussed above is an inherent limitation
of all horn antennas of the conventional type.” The relations of (13-38),
(13-39), and (13-40) can be applied to all the horns of Fig. 13-18, to de-
termine the optimum dimensions. However, the appropriate value of 8,
may differ as discussed in the following sections. Another limitation of
horn antennas is that for the most uniform aperture illumination higher
modes of transmission in the horn must be suppressed. It follows that
the width of the wave guide at the throat of the horn must be between 3}
and 1 wavelength, or if the excitation system is symmetrical, so that even
modes are not energized, the width must be between  and § wavelengths,

1At a given frequency the wavelength in the horn A, is always equal to or greater than
the free-space wavelength X, Since )\, depends on the horn dimensions, it is more con-
venient to express 8 in free-space wavelengths A.

2In the lens-compensated type of horn antenna (see Chap. 14) the velocity of the
wave is increased near the edge of the horn with respect to the velocity at the axis in
order to equalize the phase over the aperture.
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13-7. The Rectangular Horn Antenna." Provided that the aperture in
both planes of a rectangular horn exceeds 1 wavelength, the pattern in
one plane is substantially independent of the aperture in the other plane.
Hence, in general, the H-plane pattern of an H-plane sectoral horn is the
same as the H-plane pattern of a pyramidal horn with the same H-plane
cross section. Likewise, the E-plane pattern of an E-plane sectoral horn
is the same as the E-plane pattern of a pyramidal born with the same
E-plane cross section. Referring to Fig. 13-20, the total flare angle in

[}
/¢ °
o
eE |} L lo Ay
[]
E-plane cross-section
H-plane cross-section []

(a) T (b)

Fic. 13-20. E-plane and H-plane cross sections.

the E plane is 6, and the total flare angle in the H plane is ¢,. The axial
length of the horn from throat to aperture is L, and the radial length 1s
R. In Fig. 13-21a measured patterns’ in the E plane and # plane are
compared as a function of B. Both sets are for a flare angle of 20°. The
E-plane patterns have minor lobes whereas the H-plane patterns have
practically none. In Fig. 13-21b measured patterns® for horns 8 wave-
lengths long are compared as a function of flare angle. In the upper row
L-plane patterns are given as a function of the E-plane flare angle 6,,
and in the lower row H-plane patterns are shown as a function of the

TW. L. Barrow and F. D. Lewis, The Sectoral Electromagnetic Horn, Proc. I.R.E.,
27, 41-50, January, 1939.

W. L. Barrow and L. J. Chu, Theory of the Electromagnetic Horn, Proc. I.R.E.,
27, 51-64, January, 1939.

L. J. Chu and W. L. Barrow, Electromagnetic Horn Design, Trans. A.[.E.E., B8,
333-337, July, 1939.

F. BE. Terman, “Radio Engineers’” Handbook,” MeGraw-Hill Book Company, Inc.,
New York, 1943, pp: 824-837. This reference includes a summary of design data on
horns.

Chap. 10 by J. R. Risser, “Microwave Antenna Theory and Design,” edited by S.
Silver, McGraw-Hill Book Company, Inc., New York, 1949, pp. 349-365.

Chap. 6, by G. Stavis and A. Dorne, “Very High Frequency Techniques,” by Radio
Research Laboratory Staff, McGraw-Hill Book Company, Inc., New York, 1947,

*D. R Rhodes, An Experimental Investigation of the Radiation Patterns of Electro-
magnetic Horn Antennas, Proc. I.R.E., 36, 1101-1105, September, 1948,
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H-plane flare angle ¢,. For a flare angle §, = 50° the E-plane pattern is
split, whereas for ¢, = 50° the H-plane pattern is not. This is because a
given phase shift at the aperture in the E-plane horn has more effect
on the pattern than the same phase shift in the H-plane horn. In the
H-plane horn the field goes to zero at the edge of the aperture, so the
phase near the edge is relatively less important. Accordingly, we should

R=1I\ R=2)\ R=4\ R=8\ R=16) 1\
6,=20° Q O Q E-plane
(@)
R=1A R=2\ R=4\ R=8\ R=16)
By=20° Q O H-plane
8,=5° 6,=10° 8,=20° 8,=30° 6,=40° 6=50° |
- E-
RBXQ Q plane
. (6)
?,=5 Bo=10° PBo=20° Py=30° Po=40° Po=50°
R:BXO Q Q H-
plane

F1g. 13-21. Measured E- and H-plane patterns of rectangular horns as a function of
flare angle and horn length. (After Rhodes.)

expect the value of §, for the optimum H-plane horn to be larger than
for the optimum E-plane horn. This is illustrated in Fig. 13-22 discussed
in the next paragraph.

From Rhodes’s experimental patterns, optimum dimensions' were se-
lected for both E- and H-plane flare as a function of flare angle and horn
length L. These optimum dimensions are indicated by the solid lines in
Fig. 13-22. The corresponding half-power beam widths and apertures in
wavelengths are also indicated. The dashed curves show the calculated

t Minimum beam width as a function of 8 or ¢, for a constant length L.
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Fre. 13-22. Experimentally determined optimum dimensions for rectangular horn
antennas. Solid curves give relation of flare angle 8; in E plane and flare angle ¢, in
H plane to horn length (see Fig. 13-20). The corresponding half-power beam widths
and apertures in wavelengths are indicated along the curves. Dashed curves show
calculated dimensions for 8, = 0.25 A and 0.4 A,

dimensions for a path length 6, = 0.25 A and & = 0.4 A. The value of
0.25 A gives a curve close to the experimental curve for E-plane flare,
while the value of 0.4 X\ gives a curve close to the experimental one for
H-plane flare over a considerable range of horn length. Thus, the tolerance
in path length is greater for H-plane flare than for E-plane flare as indi-
cated above.

To illustrate the use of Fig. 13-22, z
suppose that we wish to construct an
optimum horn with a 14° half-power Y
beam width in the H plane. From
the upper solid curve in Fig. 13-22,
the horn should have a flare angle
¢, = 36° and a length L = 7.8\,
The corresponding H-plane aperture
is 5 A, If the maximum directivity
is also desired in the E plane with
this same horn (L = 7.8 \), we note
from the lower solid curve that
the flare angle 6, in the K plane should be 29° and that the half-power
beam width to be expected in the E plane is 12°. The corresponding
aperture E plane is about 4 A\. Thus, although the E-plane aperture is
not so large as the H-plane aperture, the beam width is less (but minor

sectoral horn

Fre. 13-23. Cylindrical coordinates for
E-plane sectoral horn.
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lobes larger) because the E-plane aperture distribution is more uniform.
For horn operation over a frequency band it is desirable to determine the
optimum dimensions for the highest frequency to be used, since & as
measured in wavelengths is largest at this highest frequency.

The field in a sectoral horn may be determined by developing from
Maxwell’s equations a wave equation in cylindrical coordinates and then
finding a solution appropriate to the boundary conditions at the walls of
the horn. The horn is considered as a sectoral guide of infinite length.
The general solutions for the fields in the horn have been given by Barrow
and Chu.' TFor example, the fields inside the E-plane sectoral horn are
given in terms of the cylindrical coordinates (r, 8, z) of Fig. 13-23 by

E, = K, cos <"~£)[H{2’(kr) + K,H® (k)] (13-41)
_ JrK, . (E) @ ) _
H, =20 sin (3 )IH (kr) + K,H® (k)] (13-42)
H, = jﬁff—‘ cos (%)[Hﬁ,”(m) + K,H (k)] (13-43)

where K, = complex constant

K, = ratio of reflected to incident wave amplitudes at a point in
the horn
k= Vg — (x/v)’
w = height of horn
w = 2nf
" = Hankel function of first kind and zero order
¥ = Hankel function of second kind and zero order

M = Hankel function of first kind and first order
H'® = Hankel function of second kind and first order®

1Seec W. L. Barrow and L. J. Chu, Theory of the Illectromagnetic Horn, Proc. I.R.E.,
27, 51-64, January, 1939; also Chap. 10 by J. R. Risser, “Microwave Antenna Theory
and Design,” edited by 8. Silver, Mc¢Graw-Hill Book Company, Inc., New York, 1949,
pp. 349-365.

Ho W (kr) = Jo(kr) 4 jNo(kr)

Ho® (kr) = Jolkr) — jNo(kr)
H WO (kr) = Ji(kr) + jNi(kr)
H,®(kr) = Ji(kr) — jN1(kr)
where J represents a Bessel function and N a Neumann function.

Bessel and Neumann functions are somewhat analogous to sine and cosine functions.
Similarly there is an analogy between Hankel functions and exponential functions. For
example, compare

HoW(w) = Jo(w) + jNo(w)
and
¢ = cosu + Jsin u
: \Footnote continued on p. 379.)
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Assuming field distributions across the horn aperture of the type given
above, the radiation-field patterns of horns have been calculated by
Barrow' and by Chu.? The method is similar to that discussed in Chap. 4
in which Huygens’ principle is applied and the contributions to the far
field integrated over the aperture. It is assumed that the aperture is at
least several wavelengths. Edge effects are also neglected, that is, it is
assumed that the field at the aperture is the same as though the sectoral
guide extended to infinity. The actual field distribution differs from this
because the abrupt termination of the sectoral guide at the aperture
results in higher mode waves and also currents on the outside surface of
the horn. Hence, extremely close agreement between calculated and
measured patterns is not to be expected.

By calculating the radiation intensity in the direction of the horn axis
and comparing this with the radiation intensity from an isotropie source
radiating the same power, the directivity can be obtained for large sectoral
horns. For example the directivity D for horns with only E-plane flare is
given by Schelkunoff® as

64R J A A
D=—"4, [C(—L_L> S(—’Lﬂ 13-44
Ay " V2R, + V2R, (1349

where R = radial side length of horn (in Fig. 13-19, R = L + 5)

Ay = aperture of horn in F plane

A g, = aperture of horn in E plane in free-space wavelengths

A = aperture of horn in H plane in free-space wavelengths and
where C and S indicate the Fresnel integrals. That is,

z 2
Clx) = f cosﬂzl—du (13-45)
0
,»nd
r 2
S@ = [ sin T2 du (13-46)
0

A cylindrical traveling wave may be represented by a Hankel function just as a plane
traveling wave may be represented by an exponential function. Thus, in (13-41),
(13-42), and (13-43) H® represents a eylindrical wave traveling in the 4 direction,
and H® represents a cylindrical wave traveling in the —r direction.

'W. L. Barrow and L. J. Chu, Theory of the Electromagnetic Horn, Proc. I.R.E., 21,
61-64, January, 1939; W. L. Barrow and F. M. Greene, Rectangular Hollow Pipe
Radiators, Proc. I.R.E., 26, 1498-1519, December, 1938.

*L J. Chu, Caleulation of Radiation Properties of Hollow Pipes and Horns, J. 4p-
plied Phys., 11, 603-610, September, 1940.

#S. A. Schelkunoff, ‘“Electromagnetic Waves,” D. Van Nostrand Company, Ine.,
New York, 1943, pp. 360-365.
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A simple approximate expression for the directivity of a horn antenna

with large aperture may be written in terms of the maximum effective
aperture. Thus, from (3-47)

D = ‘)’41I'A E’)\AH)\ (13-47)

where Ay, = aperture in free-space wavelengths in E plane
A = aperture in free-space wavelengths in H plane
v = ratio of maximum effective aperture to physical aperture
(see absorption ratio, Sec. 3-6).
For optimum horns a value of ¥ =~ 0.6 is appropriate. Thus, (13-47)
becomes

D~175Apn4m (13-48)
The power gain G of the horn over a 1-wavelength dipole antenna is then
G ~45 Apndm (13-49)

13-8. Beam-width Comparison. It is interesting to compare the beam
width between first nulls and between half-power points for uniformly
illuminated rectangular and circular apertures obtained in previous
chapters with those for optimum rectangular horn antennas (sectoral or

TABLE 13-1*
Beam width in degrees
Type of aperture Between Between
first nulls half-power points
Uniformly illuminated rectangular aperture 115 51
or linear array I In
Uniformly illuminated circular aperture 140 58
D A D)‘
Optimum E-plane rectangular horn 115 56
Am Am
Optimum H-plane rectangular horn 172 67
Am Am
* [ = length of rectangular aperture or linear array in free-space wavelengths
D, = diameter of circular aperture in free-space wavelengths
Apg, = aperture in E plane in free-space wavelengths
A, = aperture in H plane in free-space wavelengths
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pyramidal). This is done in Table 13-1. In general, the relations apply
to apertures that are at least several wavelengths. The beam widths
between nulls for the horns are calculated, and the half-power beam
widths are empirical.’

13-9. Circular Horn Antennas. The conical horn® (Fig. 13-18f) can be
directly excited from a circular wave guide. Optimum dimensions can be
determined from (13-38), (13-39), and (13-40) by taking é, = 0.32 X.

The biconical horns® of Fig. 13-18 have patterns that are nondirectional
in the horizontal plane (axis of horns vertical). These horns may be
regarded as modified pyramidal horns with a 360° flare angle in the hori-
zontal plane. The optimum vertical-plane flare angle is about the same
as for a sectoral horn of the same cross section excited in the same mode.

PROBLEMS

13-1. What is the terminal impedance of a slot antenna boxed in to radiate only
in one half-space whose complementary dipole antenna has a driving point impe-
dance of Z = 100 + jO ohms. The box adds no shunt susceptance across the
terminals.

13-2. What dimensions are required of a slot antenna in order that its terminal
impedance be 75 4+ jO ohms. The slot is open on both sides. Use the empirical
formula of Sec. 10-11 for the complementary dipole.

13-3. What is the approximate maximum power gain of an optimum horn an-
tenna with a square aperture 10 wavelengths on a side?

13-4. a. Calculate and plot the E-plane pattern of the horn of Prob. 3, assuming

uniform illumination over the aperture,
b. What is the half-power beamwidth and the angle between first nulls?

1 Chap. 6, by G. Stavis and A. Dorne, “Very High Frequency Techniques,” by Radio
Research Laboratory Staff, McGraw-Hill Book Company, Inc., New York, 1947.

2 G. C. Southworth and A. P. King, Metal Horns as Directive Receivers of Ultra-
short Waves, Proc. I.R.E., 27, 95-102, February, 1939.

A. P. King, The Radiation Characteristics of Conical Horn Antennas, Proc. I.R.E.,
38, 249-251, March, 1950. For optimum conical horns King gives half-power beam
widths of 60/Ag, in the E plane and 70/Ag, in the H plane. These are about 6 per cent
more than the values for a rectangular horn as given in Table 13-1.

*W. L. Barrow, L. J. Chu, and J. J. Jansen, Biconical Electromagnetic Horns, Proc.
I.R.E, 27, 769-779, December, 1939.
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CHAPTER 14

LENS, LONG WIRE,
AND OTHER TYPES OF ANTENNAS

IN THIS chapter a considerable variety of antennas is considered. Some
are combinations or modifications of types discussed in previous chapters,
while others, such as the lens antennas treated in the first sections, are
based on entirely different principles.

14-1. Lens Antennas. At centimeter wavelengths many optical devices
can be applied. The parabolic reflector has already been considered
(Chap. 12). The lens is another optical device which offers interesting
possibilities.

Lens antennas may be divided into two distinet types: (1) those in
which the electrical path length is increased by the lens medium and (2)

Dietectric lens

Plane
Source \ vfm:ve1
ron
prlr?\;ry ’) ) )
antenna
Wave fronts
Wave
(a) retarded
E-plane metal plate lens
Plane
Source wave
or front
primary * ) ) )
antenna
Wave fronts
Wave
(b) accelerated

Frg. 14-1.  Comparison of dielectric lens and E-plane metal-plate lens actions.
382
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Sec. 14-2] LENS AND LONG WIRE ANTENNAS 383

those in which the electrical path length is decreased by the lens medium.
The first type is sometimes called a delay lens since the wave is retarded
by the lens mediam. Dielectric lenses and H-plane metal-plate lenses
belong to this type. E-plane metal-plate lenses belong to the second type.
The actions of a dielectric lens and an E-plane metal plate lens are com-
pared in Fig. 14-1.

The dielectric antennas may be subdivided into two groups:

1. Lenses constructed of nonmetallic dielectrics, such as lucite or poly-

styrene

2. Lenses constructed of metallic or artificial dielectrics
These types are considered in the next two sections.

14-2. Nonmetallic Dielectric Lens Antennas.'! This type is similar to
the optical lens. It may be designed by the ray analysis methods of
geometrical optics. As an example, let us determine the shape of the
plano-convex lens of Fig. 14-1a for transforming the spherical wave front
from an isotropic point source or primary antenna into a plane wave front.”

Source or
primary anfenna

Dielectric A
lens

Fia. 14-2. Path lengths in dielectric lens.

The field over the plane surface can be made everywhere in phase by
shaping the lens so that all paths from the source to the plane are of equal
electrical length. "This is the principle of equality of electrical (or optical)
path length. Thus, in Fig. 14-2, the electrical length of the path OPP’

1 A detailed discussion is given by J. R. Risser, Chap. 11, “Microwave Antenna
Theory and Design,” edited by 8. Silver, McGraw-Hill Book Company, Inc., New
York, 1949.

* A wave front is defined as a surface at all points of which the field is in the same
phase.
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must equal the electrical length of the path 0QQ'Q”. Or more simply
OP must equal 0Q'. Let OQ = L and OP = R, and let the medium sur-

rounding the lens be air or vacuum. Then,

R L  Rcosf— L
N + v (14-1)
where A\, = wavelength in free space (air or vacuum)
As = wavelength in the lens
Multiplying (14-1) by A,

R=L+ n(Rcosb — L) (14-2)

where n = N\o/As = index of refraction
In general,

(14-3)

where f = frequency
v, = velocity in free space
v, = velocity in dielectric
r = permeability of the dielectric medium
e = dielectric constant of the dielectric medium
uo = permeability of free space = 4x X 1077 henry/meter
& = dielectric constant of free space = 8.85 X 107"* farad/meter

But
B = ofh, (14-4)
and
€ = €€, (14-5)
where u, = £ = relative permeability of dielectric medium
0

€ = f = relative dielectric constant of dielectric medium
0
Thus, from (14-3)

n = Ve , (14-6)
For nonmagnetic materials u, is very nearly unity so that
n= Ve

The index of refraction of dielectric substances is always greater than 1.
For vacuum ¢, = 1 by definition. For air at atmospheric pressure ¢, =
1.0006, but in most applications it is sufficiently accurate to take ¢, = 1
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Sec. 14.2] LENS AND LONG WIRE ANTENNAS 385

for air. The relative dielectric constant, index of refraction, and power
factor for a number of lens materials are listed in Table 14-1 in order of
increasing ¢,. Although the dielectric constant of materials may vary
with frequency (e, for water is 81 at radio frequencies and about 1.8 at
optical frequencies), the table values are appropriate at radio wavelengths

TABLE 14-1
1
Relative |
Material dielectrie Index of Power
constant | refraction factor
' ' n
Paraffin........... ... ... ... ool 2.1 1.4 0.0003
Polyethylene............. ... ... ... 2.2 1.5 0.0003
Lucite or plexiglass (inethacrylic resin). . .. 2.6 1.6 0.01
Polystyrene. ..o, 2.5 1.6 0.0004
Flint glass. . ..............coiiiiiinn.. 7 2.5 0.004
Polyglas (TiO. or titanate fillers).......... 4-16* 2-4 0.003
Rutile (Ti02). ..o 85-170% 9-13 0.0006

*Depends on composition.
tDepends on orientation of crystal with respect to field.

down to the order of 1 em. The power factor also is a function of frequency.
The values listed merely indicate the order of magnitude at radio fre-
quencies.

Returning now to Kq. (14-2) and solving for R, we have

(=1L
T ncosd —1

(14-7)

This equation gives the required shape of the lens. It is the equation of
a hyperbola. The distance L is the focal length of the lens.’ The asymp-
totes of the hyperbola are at an angle 8, with respect to the axis. The
angle 6, may be determined from (14-7) by letting B = ». Thus,

1
f, = arccos n (14-8)

The point O is at one focus of the hyperbola. The other focus is at O’.
For a point source at the focus the three-dimensional lens surface is a
spherical hyperbola obtained by rotating the hyperbola on its axis. For
an in-phase line source normal to the page (Fig. 14-2) as the primary
antenna, the lens surface is a cylindrical hyperbola obtained by translating

1The F or f number of a lens is the ratio of the foeal distance to the diameter A of the
lens aperture. Thus, F = L/A.
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the hyperbola parallel to the line-source. The lens contours of Fig. 14-2
illustrate but one of many possible lens configurations.

Although Eq. (14-7) for the lens surface was derived without using
Snell’s laws of refraction,’ these laws are satisfied by the lens boundary
as given by (14-7). .

The plane wave emerging from the right side of the lens produces a
secondary pattern with maximum radiation in the direction of the axis.
The shape of the secondary pattern is a function of both the aperture A
and the type of illumination. This aperture-pattern relation has been dis-
cussed in previous chapters.

For an isotropic point-source pri-
mary antenna and a given focal dis-
tance I, the field at the edge of the
lens (6 = 6,) is less than at the center
(68 = 0), the effects of reflections at
the lens surfaces and losses in the

Fig. 14-3. Annular zone, lens material being neglected. The

variation of field intensity in the

aperture plane of the spherical lens can be determined by caleulating the

power per unit area passing through an annular section of the aperture as a

function of the radius p.” Referring to Fig. 14-3, the total power W through
the annular section of radius p and width dp is given by

W = 2rpdp P, (14-9)

where P, = power density (power per unit area) at radius p
This power must be equal to that radiated by the isotropic source over
the solid angle 2= sin 6 df. Thus,

W =2rsinfdo U (14-10)

where U = radiation intensity of the isotropie source (power per unit solid
angle)
Equating (14-9) and (14-10)

pdp P, =sin0do U (14-11)

1 8nell’s laws of refraction are (1) that the incident ray, the refracted ray, and the
normal to the surface lie in a plane and (2) that the ratio of the sine of the angle of inci-
dence to the sine of the angle of refraction equals a constant for any two media. If the
medium of the incident wave is air, the constant is the index of refraction n of the
medium with the refracted ray. Thus, sin «/sin 8 = n, where « is the angle between
the incident ray in air and the normal to the surface and B is the angle between the
refracted ray in the dielectric medium and the normal to the surface.

2 J, R. Risser, Chap. 11, “Microwave Antenna Theory and Design,” edited by S.
Silver, McGraw-Hill Book Company, Ine., New York, 1949.
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and
P, sin 8
te. U 14-12
U = olde/db) (1412
But p = R sin 4 and introducing the value of B from (14-7)
p, = neosb=1U __ 5 (14-13)

(n — 1)*(n — cos O)L°

The ratio of the power density P, at the angle # to the power density
P, at the axis (§ = Q) is given by the ratio of (14-13) when 6 = 4, to
(14-13) when 8 = 0. Thus,

P,  (ncosf —1)°
P, (n — 1)*(n — cos 9)

(14-14)

In the aperture plane the field-intensity ratio is equal to the square root

of (14-14), or'
&_\/E_ 1 (n cos § — 1)° ]
E, NP, n-—1 n — cos 0 (14-15a)

The ratio E;/E, is the relative field intensity at a radius p given by
p = Rsin 6. Forn = 1.5

E,

EﬂO=O.7at0=2O
and

By, _ A0°

EO—O.14at0—-4O

Hence, for a nearly uniform aperture illumination an angle 4, to the edge
of the lens even less than 20° is essential unless the pattern of the primary
antenna is an inverted type, that is, one with less intensity in the axial
direction (§ = 0) than in directions off the axis. Ior a constant size of
aperture a small value of 6, results in a large focal length L.
Instead of uniform aperture illumination, a tapered illumination may
be desired in order to suppress minor lobes. Thus, in the above example
1Equation (14-15a) is for a spherical lens. Attenuation in the lens is neglected. For a
cylindrical lens the field intensity ratio is
E, ncos 6 — 1
B Vi - 1)(n — cos 8)

where E;/E; is the relative field intensity at a distance y from the axis given by
v = Rsin 6.

(12-15b)
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with 6, = 40° the field at the edge of the lens is 0.14 its value at the
center. The disadvantage of this method of producing a taper is that the
lens is bulky (Fig. 14-4a). An alternative arrangement, shown in Fig.
14-4b, has a lens of smaller 4, value with the desired taper obtained with
a directional primary antenna at a larger focal distance (relative to the
aperture). The lens in this case is less bulky, but the focal distance is
larger (F number larger).

For compactness and mechanical lightness it would be desirable to com-

A0
@/%U

ksotropic
primary
antenna
Tapered
(a) illumingtion
Directionat
primary antenna
- 6,
——-\\_/
(8)
i
-/ z
<O 2,
Primary
antenna 3Xa
Zoned lens
(¢)

F1a. 14-4. Short-focus lens (a), long-focus lens (b), and zoned lens (c).

bine the short focal distance of the lens at (a) with the light weight of
the lens at (b). This combination may be largely achieved with the short
focal distance zoned lens of Fig. 14-4c. The weight of this lens is reduced
by the removal of sections or zones, the geometry of the zones being such
that the lens performance is substantially unaffected at the design fre-
quency. Whereas the unzoned lens is not frequency sensitive, the zoned
lens is and this may be a disadvantage. The thickness z of a zone step
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is such that the electrical length of z in the dielectric is an integral number
of wavelengths longer (usually 1) than the electrical length of z in air.
Thus, for a 1-wavelength difference

z oz
N N 1 (14-16)
or

(14-17)

For a dielectric with index of refraction n = 1.5
Z = 2Ao

that is, each zone step is twice the free-space wavelength. Since n =
A')/xd
Z = 3)\3

Thus, in this case, the electrical length of z in the dielectric is 3 wave-
lengths, while the electrical length of z in air is 2 wavelengths (see Fig.
14-4¢).

In lens antennas the primary antenna does not interfere with the plane
wave leaving the aperture as it does in a symmetrical parabolic reflector
(Fig. 12-18.2b). However, the energy reflected from the lens surfaces may
be sufficient to cause a mismatch of the primary antenna to its feed line

:Feed quide [ ?
> Axis

- ~_—————

Primory

ontenna e

(a)

Primary
antenna

Lens_axis T

Antenna oxis

(b)
F1a. 14-5. Reflected waves entering primary antenna (2) and refocused to one side
of primary antenna (b).
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or guide. In the lens of Fig. 14-5a reflections from the convex surface of
the lens do not return to the source except from points at or near the axis.
This is not serious. But the wave reflected internally from the plane lens
surface is refocused at the primary antenna and may be disturbing. In
this case, the wave is reflected at normal incidence, and the reflection co-

efficient 1s
_Z,—1
p = 7, ¥ 7 (14-18)

where Z, = intrinsic impedance of free space = v/po/¢ -
Z = intrinsic impedance of dielectric lens material = +/u/e
Thus,

(/) =1 _n—1
PE @2y +1 n+1

(14-19)

where n = the index of refraction of the dielectric lens material

For n = 1.5, p = 0.2; while for n = 4, p = 0.6. Hence, for a small
reflection a low index of refraction is desirable. The reflection can also be
minimized by other methods. For example, a I-wavelength plate can be
applied to the plane lens surface with the refractive index of the plate
made equal to \/%, where n is the refractive index of the lens proper.*
Another method is to use a type of lens which does not have an equiphase
surface. A third method is to tilt the lens slightly as indicated in Fig.
14-5b so that the reflected wave refocuses to one side of the primary
antenna.

14-3. Artificial Dielectric Lens Antennas. Instead of using ordinary,
noametallic dielectrics for the lens, Kock® has demonstrated that artificial
or metallic dielectries can be substituted, generally with a saving in weight.
Whereas the ordinary dielectric consists of molecular particles of micro-
scopic size, the artificial dielectric consists of discrete metal particles of
macroscopic size. The size of the metal particles should be small com-
pared to the design wavelength to avoid resonance effects. It is found
that this requirement is satisfied if the maximum particle dimension
(parallel to the electric field) is less than 1 wavelength. A second require-
ment is that the spacing between the particles be less than a wavelength
to avoid diffraction effects.

The particles may be metal spheres, discs, strips, or rods. For example,

1Tn general the refractive index of a {-wavelength matching plate between two media
should be equal to the geometric mean of the indices of the two media. This is equiva-
lent to saying that the intrinsic impedance Z, of the plate material is made equal to the
geometric mean of the intrinsic impedances Z; and Z; of the two media. Thus,
Z;. = ’\/Z 1Z 2

1W. E. Kock, Metallic Delay Lens, Bell System Tech. J., 27, 58-82, January, 1948,

Il
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a plano-convex lens constructed of metal spheres is illustrated in Fig. 14-6.
The spheres are arranged in a three-dimensional array or lattice structure.
Such an arrangement simulates the crystalline lattice of an ordinary
dielectric substance but on a much

larger scale. The radio waves from the

source or primary antenna cause oscil-

lating currents to flow on the spheres.

The spheres are, thus, analogous to the ¢, ¢ L
oscillating molecular dipoles of an ordi-

nary dielectric.

An artificial dielectric lens can be de- A
signed in the same manner as an ordi- wove
nary dielectric lens (Sec. 14-2). To do Fia. 14-6. Artificial dielectric lens of
this, it is necessary to know the effec- metal spheres.
tive index of refraction of the artificial
dielectric. This can be measured experimentally with a slab of the material,
or it can be caleulated approximately by the following method of analysis.'
Although metal discs or strips® are generally preferable to spheres because

Plane

4 e,

W

jS'frips /l | I . l ]\_L
11 E_T 1w
\ +

I 1 1
Cross section of lens Convex side of tens
(a) (b)

Fig. 14-7. Artificial dielectric lens of flat metal strips.

they are lighter in weight, the sphere is more readily analyzed, and the
method will be illustrated for the case of the sphere.

Let an uncharged conducting sphere be placed in an electric field E as
in Fig. 14-8a. The field induces positive and negative charges as indicated.
At a distance the effect of these charges may be represented by point
charges 4+¢ and —gq separated by a distance I as in Fig. 14-8b. Such a
configuration is an electric dipole of dipole moment ¢l. At a distance r > |
the potential due to the dipole is given by

y = dlcos 6 (14-20)
47!'607'

W, E. Kock, Metallic Delay Lens, Bell System Tech. J., 27, 58-82, January, 1948,
*The strips may be continuous in a direction perpendieular to the electric field as
indicated in Fig. 14-7.
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The polarization P of the artificial dielectric is given by
P = Ngl (14-21)

where N = number of spheres per cubic meter

1 = vector joining the charges ¢
The electric displacement D, the electric field intensity E, the polarization
P are related by

D=¢E=¢E + P (14-22)

where ¢, = dielectric constant of free space
Thus, the effective dielectric constant e of the artificial dielectric medium is

e=eo+§=eo+N%l (14-23)

Hence, if the number of spheres per unit volume and the dipole moment
per unit applied field are known, the effective dielectric constant can be

rs .
T

1

L
!

(a) (b)

Fia. 14-8. Charged sphere and equivalent dipole.
determined. Let us now determine the dipole moment per unit applied
field.
We have E = — <7V, Then in a uniform field the potential
V= —[ Ecosodr= —Ercos (14-24)
0

where 6 is the angle between the radius vector and the field (see Fig. 14-8b).
The potential V, outside the sphere placed in an originally uniform field
is the sum of (14-20) and (14-24) or

Vo= —Er cos 6 + 2959 (14-25)

2
4re,r
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At the sphere (radius @) (14-25) becomes'

ql cos 6

= —Fa cos 0 + Lre®

and solving for ¢i/E we obtain
%}Z = 4mea’ (14-26)

Introducing this value for the dipole moment per unit applied field in
(14-23)

€ = ¢ + dmre;Na®
or

¢, = 1 + 4zNa® (14-27)

where ¢, = effective relative dielectric constant of the artificial dielectric.

If the effective relative permeability of the artificial dielectric is unity,
the index of refraction is given by the square root of (14-27). However,
the lines of magnetic field of a radio wave are deformed around the sphere
since high-frequency fields penetrate to only a very small distance in good
conductors. The effective relative permeability of an artificial dielectric
of conducting spheres is

# = 1 — 2zNd® (14-28)
TABLE 14-2*
ARTIFICIAL DIELECTRIC MATERIALS
Type of (?elatlv.e Relatl‘.’? Index of
. ielectric permeability .
particle refraction n
constant e, I

Sphere.......... 14+ 4aNd® | 1 — 2eNa® [A/(1 + 4xNd®(1 — 2xNa®)
Disc............ 1+ 5.3Nd® ~1 V1 + 5.3Nd°
Strip........... 14+ 7.8N"w ~1 V1 + 7.8N W

*N = number of spheres or discs per cubic meter
a = radius of sphere or disc in meters

N’ = number of strips per square meter in lens cross section (see Fig. 14-7a)
w = width of strips in meters (see Fig. 14-7)

1The potential of the sphere is zero since there is as much positive as negative charge
on its surface.
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The effective index of refraction of the artificial dielectric of conducting
spheres is then given by

n= vVem = VI + &Nl — 22Na" (14-29)

Equation (14-29) gives a smaller n than obtained by the square root of
(14-27) alone. According to (14-29) the index of refraction of an artificial
dielectric of conducting spheres can be calculated if the radius a of the
sphere (in meters) and the number & of spheres per cubic meter are known.
The relative permeability of disc or strip-type artificial dielectrics is more
nearly unity so that one can take 4/¢, as their index of refraction. Theo-
retical values of e, u,, and » for artificial dielectrics made of conducting
spheres, discs, and strips are listed in Table 14-2." According to Kock the
table values are reliable only for e, < 1.5, and only approximate for larger
¢.. For e, > 1.5, N becomes sufficiently large that the particles interact
because of their close spacing. This effect is neglected by the formulas.
14-4. E-plane Metal-plate Lens Antennas.” Whereas the ordinary and
artificial dielectric lens depend for their action on a retardation of the
wave iIn the lens, the E-plane metal-plate type of lens depends for its

e TE 2%
/ ‘v
Yy 1
n
b Y o 1 0
/ g 0.5 1.0 1.5 2.0
X b in free space wavelengths
Fi1G. 14-9. Wave between Fra. 14-10. Velocity » of wave be-
plates in E-plane type of tween parallel plates and equivalent
metal-plate lens. index of refraction n as a function of

spacing b between plates.

action on an acceleration of the wave by the lens. In this type of lens the
metal plates are parallel to the E plane (or plane of the electric field).
Referring to Fig. 14-9, the velocity » of propagation of a TE,, wave (E as

1From W. E. Kock, Metallic Delay Lens, Bell System Tech. J., 27, 58-82, January,

1948.
W, E. Kock. Metal Lens Antenna, Proc. I.R.E., 34, 828-836, November, 1946.
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indicated) in the z direction between two parallel conducting plates of
large extent is given by’
Vo

\/ <x )2 (14-30)
1= \%
where v, = velocity in free space

A = wavelength in free space

b = spacing of plates or sheets
The plates act as a guide, transmitting the wave for values of b > A/3.
The spacing b = A/2 is the critical spacing since for smaller values of b
the guide is opaque and the wave is not transmitted. The variation of the
velocity for a fixed wavelength as a function of the plate spacing b is
illustrated in Fig. 14-10. The velocity of the wave between the plates is
always greater than the free-space velocity v,. It approaches infinity as
b approaches 0.5 A, and it approaches v, as b becomes infinite.

The equivalent index of refraction of a medium constructed of many

such parallel plates with a spacing b is

=t \/1 _ %)2 (14-31)

The index is always less than 1 as shown in Tig. 14-10.

The acceleration of waves between plates has been applied” in a metal-
plate lens for focusing radio waves. TFor instance, a metal lens equivalent
to the plano-convex dielectric lens of I'ig. 14-1a or Fig. 14-2 is a plano-
concave type as illustrated in Fig. 14-11. The plates are cut from flat

V=

I

F1a. 14-11. E-plane type of metal-plate lens.

sheets, the thickness ¢ at any point heing such as to transform the spherical
wave from the source into a plane wave on the plane side of the lens. The
aectrie field is parallel to the plates.

11,. J. Chu and W. L. Barrow, Electromagnetic Waves in Hollow Metal Tubes of

Rectangular Cross Section, Proc. I.R.E., 26, 1520-1555, December, 1938.
*W. E. Kock. Metal Lens Antennas, Proc. [.R.E., 34, 828-836, November, 1946,
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The lens plate on the axis of the lens in Fig. 14-11 is shown in Fig. 14-12.
The shape of the plate can be determined by the principle of equality of
electrical path length. Thus, in Fig. 14-12 OPP’ must be equal to 0QQ’
in electrical length. Or

L R, L—Rcost
A A

==+ T (14-32)

where A = wavelength in free space
A\, = wavelength in lens
Then

i

. (Q-=-mL
R = 1 —ncosé (14-33)
This relation is identical with (14-7). However, to keep both numerator
and denominator positive (since n < 1in the present case), the numerator
and denominator of (14-7) should be multiplied by minus 1. Withn < 1,

. (14-33) is the equation of an ellipse.

The three-dimensional concave sur-

P
P face of the lens in Fig. 14-11 would be
R generated by rotating the contour for
1 [ Axis the center plate, as given by (14-33),
Els Qf o on the axis. If the primary antenna

b— L A were a line source perpendicular to the

f ‘L page in Fig. 14-12, all the plates would

be identical and the lens surface

Fic. 14-12. Geometry for E-plane type would be in the form of an elliptical
of metal-plate lens. cylinder.

Waves entering the lens of Fig,

14-11 at the point P obey Snell’s laws of refraction. However, this is not

necessarily the case for waves entering at P’ where the metal plates con-

strain the wave to travel between them. FE-plane metal-plate lenses may be

Source
®
E

s

-

Source
®
E

|¢||||IH

LT

N

(a) (b)

Fic. 14-18. Cross sections of constrained types of E-vlane metal-plate lenses.
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constructed that have only such constrained refraction. Two types are
illustrated in cross section in Fig. 14-13. Both have a line source normal to
the page. The electric field E is paral- .

lel to the source. All lens cross sec- [+ p
tions perpendicular to the line sources R F
are the same as the ones shown in the

figure. In the lens at (a) the spacing /

between plates is uniform, but the Oié L

width varies from plate to plate. In
the lens at (b) all plates have the same
width, but the spacing varies.

A disadvantage of the E-plane
metal-plate lens as compared to the
dielectric type is that it is frequency-
sensitive, that is, the lens has a relatively small band width. To determine
the band width," consider the geometry of Fig. 14-14. At the design
frequency f

Axis

Fra. 14-14. Geometry for band-width
considerations.

>t

R ¢
by (14-34)
or

L=R+4+nt (14-35)
where n = index of refraction at the design frequency f
At some other frequency f’

L+é=R+n't (14-36)
where 6 = the difference in electrical path length of OQ and OPP’

n’ = index of refraction at the frequency s’

Subtracting (14-35) from (14-36)
8= Ant (14-37)

where An = n' — n
But for a small wavelength difference AN,

on
An = £\ AN {14-38)

Introducing = from (14-31) into (14-38), differentiating, and substituting
this value of An in (14-37) yields

5:

"= 1 A
Ao

" ¢ (14-39)

1J. R. Risser, Chap. 11, “Microwave Antenna Theory and Design,” edited by S.
Silver, McGraw-Hill Book Company, Inc., New York, 1949.
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or
M,

né
)\0 (14-40)

BRVEEESY

The total band width B is twice (14-40) so

2ns 2n &

Tt 1 —xg (14-41)

B

where 8, = maximum tolcrable path difference in free-space wavelengths
fn = thickness of lens plate at edge of lens in free-space wavelengths
If we arbitrarily take § = 0.23 X,

B = % (14-42)

Forn = 0.5 and ¢ = 6 X, the band width
B = 5.5%

F1c. 14-13. Zoned type of E-plane metal-plate lons with a square aperturc 40 wave-
langths on a side.  (Courtesy W. E. Kock, Bell Telephone Laboratories.)
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Thus, the usable frequency band for this antenna is 5.5 per cent of the
design frequency.! Although zoning a dielectric lens introduces frequency
sensitivity, the effect of zoning an

E-plane metal-plate lens is to de- Y
crease the frequency sensitivity.

. : . S
Hence, zoning is desirable with E-
plane metal-plate lens, both to save -io
weight and to increase the band -5
width. An E-plane metal-plate lens 8

. . £ -20
40 wavelengths square with nine g
zones is illustrated in Fig. 14-15. The 25 l",‘ NTE
radiation-field patterns of this lens, -30 bt ’__" L . ﬂ
fed with a short primary horn an- M’ i'e A m
-35 Al A P

tenna, are shown in Fig. 14-16.
1The ba‘;n(li \lw'l‘;it}i of a zpned E- 30 20 G0 0" 207 30
P an? metal-plate lens 1s given ap- Fig. 14-16. E-planc pattern (solid) and
proximately by H-plane pattern (dashed) of 40-wave-
50n length square zoned E-plane lens of Fig,
B=—— - 14-15. (After W. E. Kock.)
T % (14-43) (Afi

where n = index of refraction at the design frequency
K = number of zones. The zone on the axis of the lens is counted
as the first zone.
A zoned lens comparable to the unzoned lens of n = 0.5, ¢ = 6 X, and
B = 5.5 per cent, has n = 0.5 and K = 3 since with n = 0.5, K ~ 1,/2.
The band width B of this zoned lens is 10 per cent, or nearly double the
band width of the unzoned lens.

The maximum absorption ratio v to be expected of large lens antennas
is about 0.6 so that the directivity and gain are about the same as for
optimum horns of the same size aperture [see (13-48) and (13-49)].

Referring to Fig. 14-17a, the thickness z of a zone step is given by

4 2
T Tt
or
A
2=1— (14-44)
: 2N =N W) - (A/F) S = f)  fi= fa _ 281
A A a’h L T f S

where A = design wavelength
S = design frequency
A1 = short wavelength limit of band
X2 = long wavclength limit of band
f1 = high-frequency limit of band
f2 = low-frequency limit of band
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The equation for the contour of the zoned lens is the same as (14-33) for
the unzoned lens except that L is replaced by L, where

(K — Dx
1—n

For the first zone (on the axis) L, = L. For the second zone L, = L + z,
for the third zone L, = L 4 2z, etec.

To shield against stray radiation from the source side of a lens, a
metallic enclosure may be used as in Fig. 14-17b. This enclosure forms an
electromagnetic horn of wide flare angle with a lens at the aperture. With-

La=1L+ =L+ (K — Dz (14-45)

Wove guide

Horn

(a) ' (b)
F16. 14-17. (a) Zoned lens plate. () Horn with lens.

\Lens

out the lens an optimum horn of the same aperture would be much longer
(smaller flare angle). The fact that the lens permits a much shorter
structure for the same size aperture is, perhaps, the principal advantage of
a lens or lens-horn combination over a simple horn antenna.

14-5. Tolerances on Lens Antennas.' Let the maximum allowable vari-
ation § in electrical path length be arbitrarily set at  wavelength (6 = \/8).?
In a dielectric lens, differences in the path length may be caused by devia-
tions in thickness from the ideal contour and by variations in the index
of refraction. Then assigning an allowable variation of A/16 to each
cause, we have as the thickness folerance that

At At _ 1
A X 16
or
A
M_16(n——1)
or

A 0.03 \
i32(n -1 =1

1J. R. Risser, Chap. 11, “Microwave Antenna Theory and Design,” edited by 8.
Sitver, McGraw-Hill Book Company, Inc., New York, 1949,
2 The maximum allowable deviation from the mean is then +1/16 wavelength.

At =

(14-46)
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Forn = 1.5
At = £0.06\
For the tolerance on n
A
Ant = 16
or
An = :I:0);03 (14-47)
2N
where #, = thickness of lens in free-space wavelengths
Dividing (14-47) by n
An 3
= intk % (14-48)

Ifn =15andt = 4\, An/n = +3%,.

In an E-plane metal-plate lens the path length may be affected by both
the thickness of the lens and by the spacing b between lens plates. Taking
5 = \/8 as for the dielectric lens and assigning A/16 to each cause, we have
as the thickness tolerance that

A 0.03 A
= 60l = n) — =T, (14-49a)
For the tolerance on the spacing b between plates we have
Ab 3n
5 = i(l — n2)tk% (14-49b)

It is interesting to compare these tolerances with the surface contour
requirement of a parabolic reflector. A displacement Az normal to the
surface of the reflector at the vertex (that is, a displacement in the axial
direction) results in a change in wave path of 2 Az. Taking § = A/8, as
for the lens antennas, the tolerance Az on normal surface displacements of
the reflector surface is given by

Az = :I:3L2 = 20.03 A (14-50)

This is a severe requirement for a large reflector and small wavelength,
since it means that the surface contour should be maintained to = 0.03 A
with respect to the vertex and focus as reference points. This places a
severe limitation on the allowable warping or twisting of the reflector.
In contrast to this, the thickness tolerance on a lens refers only to the
thickness dimension. It does not imply that the lens contour be main-

tained to this accuracy. With a lens, a relatively large amount of warping
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or twisting can be tolerated, and this is an important advantage of this
type of antenna. Furthermore, the lens axis can be tilted a considerable
angle 7 with respect to the axis through the primary antenna and center
of the lens (see Fig. 14-5b) without serious effects.’

TABLE 14-3
TOLERANCES ON LENS AND REFLECTOR ANTENNAS

Type of antenna Type of tolerance [Amount of tolerance
Parabolic reflector Surface contour +0.03 2
Thickness ;EM
n— 1
Dielectric lens* (unzoned)
Index of refraction ;t—g— %
niy
Thickness +39,
Dielectric lens* (zoned) 30— 1)
Index of refraction n =
" n %
Thick
hickness :i:O'OS A
1—mn
E-plane metal-plate lenst (unzoned)
n

Plate spacing

i(l —n )t)\ %

Thickness + 3%
E-plane metal-plate lens} (zoned)

N . 3n
Dlate spacing Tt %
n = index of refraction
t = lens thickness
t» = lens thickness in free-spacc wavelengths
*n> 1.
tn <1

The above-mentioned tolerances are summarized in Table 14-3. Toler-
ances for zoned lenses are also listed. These are derived from the unzoned
lens tolerances by taking the dielectric lens thickness as nearly equal to

1But little difference in radiation-field patterns of an E-plane metal-plate lens antenna
is revealed for a tilt angle r as large as 30° according to patterns presented by Friis and

Lewis. See H. T. Friis and W. D. Lewis, Radar Antennas, Bell System Tech. J., 26,
270, April, 1947,
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A/n — 1 and the metal-plate lens thickness as nearly equal to A/1 — n. If
the index tolerance of the lens antenna is zero, then the allowable tolerance
on the thickness is doubled, or vice versa. Likewise, if the plate-spacing
tolerance of the E-plane metal-plate lens antenna is zero, the thickness
tolerance is doubled or vice versa. All tolerances in the table are based
on a maximum allowable deviation in path length (from all causes) of
+A/16 from a mean value (total variation § = A\/8). For a larger allowable
deviation in path length the tolerances are proportionately greater. For
example, if the total variation 6 = A/4, the tolerances are doubled.

14-6. H-plane Metal-plate Lens Antennas." A wave entering a stack of
metal plates oriented parallel to the H plane (perpendicular to the E

Direction Direction
of wave of wave

| (© (d)

F1c. 14-18. (a) H-plane stack of flat metal plates. (b) H-plane stack with increased
path length. (¢) Slanted H-plane plates. (d) H-plane metal-plate lens using slanted
plate construction.

plane) as in Fig. 14-18a is affected but little in its velocity. However,
the wave is constrained to pass between the plates so that, once inside, the
path length can be increased if the plates are deformed, as suggested in
Fig. 14-18b. An increase in path length can also be produced by slanting
the plates as at (¢c). The increase of path length is S — 7. Using the

!'W. E. Kock, Path Length Microwave Lenses, Proc. I.R.E., 87, 852-855, August,
1949.
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slant plate method of increasing the path length, an H-plane metal-plate
lens can be designed by applying the principle of equality of electrical
path length. This type of lens is called an H-plane type since the plates
are parallel to the magnetic field (perpendicular to the E plane).

Referring to Fig. 14-18d, the condition for equality of electrical path
length requires that

Rcosb— L
R=1L-+ cos £ (14-51a)
or
_ (n— 1L

T ncosf—1 (14-51)

where n = 1/cos £ = effective index of refraction of the slant plate lens
medium

In this case the index of refraction is equal to or greater than 1 so that
(14-51d) is identical with (14-7) for a dielectric lens. The index » depends
only on the plate slant angle £ and is not a function of the frequency as
in the E-plane type of metal-plate lens. The most critical dimension is
the path length S in the lens. This may be affected by a change in T or
in £, Assuming a maximum allowable variation § = A/8 in electrical path
length, the tolerance in S is given by

AS = £0.06 A

A disadvantage of the H-plane metal-plate lens is that this type of con-
struction tends to produce unsymmetrical aperture illumination in the E
plane.

14-7. Polyrod Antennas. A dielectric rod or wire can act as a guide for
electromagnetic waves.! The guiding action, however, is imperfect since
considerable power may escape through the wall of the rod and be radiated.
This tendency to radiate is turned to advantage in the polyrod antenna,’
so-called because the dielectric rod is usually made of polystyrene. A
6-wavelength-long polyrod antenna is shown in cross section in Fig. 14-19a.
The rod is fed by a short section of cylindrical wave guide which, in turn,

1D. Hondros and P. Debye, Elektromagnetische Wellen an dielektrischen Drahten,
Ann. Physik, 32, 465-476, 1910.

S. A. Schelkunoff, “Electromagnetic Waves,”” D. Van Nostrand Company, Inc.,
New York, 1943, pp. 425-428.

R. M. Whitmer, Fields in Non-metallic Guides, Proc. I.R.E., 36, 1105-1109, Sep-
tember, 1948.

3G. E. Mueller and W. A. Tyrrell, Polyrod Antennas, Bell System Tech. J., 26, 837-
851, October, 1947.
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is energized by a coaxial transmission line. This type of polyrod acts as
an end-fire antenna.'

The phase velocity of wave propagation in the rod and also the ratio
of the power guided outside the rod to the power guided inside are both
functions of the rod diameter D in wavelengths and the dielectric constant®
of the rod material.> For polystyrene rods with D < \/4, the rod possesses

Tuning 3
steb 3\ | 3\
j ¢ + l ¥ Maximum
e ) &__\— DO m* radiation
% \ 0'15)\ g \Polysiyrene 0.3\
\ Circular metal tubing
wave guide

\Couxicl feed line

(a)

6
»

Fra. 14-19. (@) Cylindrical polystyrene antenna 6 wavelengths long in cross section.
(b) Radiation pattern. (After Mueller and Tyrrell.)

little guiding effect on the wave, and only a small fraction of the power is
confined to the inside of the rod. The phase velocity in the rod is also
close to that for the surrounding medium (free space). For diameters of
the order of a wavelength, however, most of the power is confined to the
rod, and the phase velocity in the rod is nearly the same as in an unbounded
medium of polystyrene. For increased directivity operation the diameter
D, in free-space wavelengths of a uniform rod (length L, > 2 and 2 <
e, < 5)is

3
& V14 2L

In practice, polystyrene rod diameters in the range 0.5 \ to 0.3 X are used.*

D, ~ +0.2 (14-52a)

1An end-fire polyrod antenna may be regarded as a degenerate form of lens antenna
with an effective lens cross section of the order of a wavelength. See Gilbert Wilkes,
Wavelength Lens, Proc. I.R.E., 36, 206-212, February, 1948,

2The relative dielectric constant e = 2.5 for polystyrene. See Table 14-1.

3G. E. Mueller and W. A. Tyrrell, Polyrod Antennas, Bell System Tech. J., 26,
837-851, October, 1947.

4To transmit the lowest (TE11) mode in a circular wave guide, the diameter D of the
guide must be at least 0.58 \/~/e, where X is the free-space wavelength and e, is the
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The rod may be uniform or to reduce minor lobes can be tapered as in
Tig. 14-19a. This polyrod is tapered halfway and uniform in cross section
the remainder of its length. The diameter D is 0.5 X at the butt end and
0.3 X at the far end. The radiation-field pattern for this polyrod as given by
Mueller and Tyrrell is shown in Fig. 14-1950. The gain over an isotropic
source is about 16 db.

To a first approximation the radiation pattern of a polyrod antenna
excited uniformly along its length may be calculated by assuming that it
is a continuous array of isotropic point sources with a phase shift of about
360 (1 + 1/2L,) deg/wavelength of antenna, where I, is the total length
of the antenna in wavelengths." The relative field pattern as a function
of the angle ¢ from the axis is then given by

E(p) = Sn(/2) i
(9 Vo (14-52b)
where ¢’ = 2rL, cos ¢ — 21er(l + i) = 21r[Lx(cos 6—1) — é]

The radiation field could be calculated exactly by applying Schelkunoff’s
equivalence principle, provided the fields on the surface were known.”
By this principle the fields at the rod surfaces are replaced by equivalent
electric and fictitious magnetic current sheets, and the radiation field is
calculated from these currents. However, the fields are not known on
the polyrod but an approximate calculation may be made by assuming a
field distribution.’

The directivity D of a polyrod antenna is given approximately by*

D ~ 8L, (14-53)

and the half-power beam width B by
60
VI
where L, = length of polyrod in free-space wavelengths
Polyrod antennas may also be of square or rectangular cross section.

B~

(14-54)

relative dielectric constant of the guide, Thus, for a rod of polystyrene (& = 2.5) fed
from a circular wave guide as in Fig. 14-19¢, the guide diameter must be at least 0.37 A
to allow transmission in the metal tube.

1'This is the Hansen and Woodyard condition for increased directivity of an end-fire
array. See Sec. 4-6.

28, A. Schelkunoff, Equivalence Theorems in Electromagnetics, Bell System Tech. J.,
15, 92-112, 1936.

*R. B. Watson and C. W. Horton, The Radiation Patterns of Dielectric Rods—
Experiment and Theory, J. Applied Phys., 19, 661-670, July, 1948.

4G. E. Mueller and W. A. Tyrrell, Polyrod Antennas, Bell System Tech J., 26, 837~
851, October, 1947.
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Another possibility is to use a dielec-
trie sleeve of circular or square cross
section, the interior of the sleeve
being air-filled. In this case the ap-
propriate diameter of the sleeve may
be of the order of 1 wavelength.
14-8. Long Wire Antennas. In
the next sections antennas of quite a
different type are considered briefly.
These are long wire antennas. Their
principal application is found in the
wavelength range of 1 to 50 meters.
14-9. V Antennas." By assum-
ing a sinusoidal current distribution,
the pattern of a long thin wire an-
tenna can be calculated as deseribed
in Chap. 5. A typical pattern is
shown in Fig. 14-20a for a wire 2
wavelengths long. The main lobes
are at an angle 8 = 36° with respect
to the wire. By arranging two such
wires in a V with an included angle
v = 72° as in Fig. 14-20b, a bidirec-
tional pattern can be obtained. This
pattern is the sum of the patterns of
the individual wires or legs. Al-
though an included angle v = 28
results in the alignment of the major
lobes at zero elevation angle (wires
horizontal) and in free space, it is
necessary to make v somewhat less
than 28 in order to obtain align-
ment at elevation angles greater
than zero.® This is because the
space pattern of a single wire is
conical, being obtained by revolv-

LENS AND LONG WIRE ANTENNAS
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L*“?\—'J (a)

V-artenna

Terminated
V-gntenng

L

1258
(d)

Shx

Fra. 14-20. (e) Calculated pattern of
2-wavelength wire with standing wave.
(b) V antenna of two such wires. (c) Ter-
minated V' antenna with legs 2 wave-
lengths long. (d) V antenna of cylindri-
cal conductors 1.25 wavelengths long with
measured pattern.

ing the pattern of Fig. 14-20q, for example, with the wire acting as the axis,

1P, 8. Carter, C. W. Hansell, and N. E, Lindenblad, Development of Directive Trans-
mitting Antennas by R.C.A. Communications, Inc., Proc. I.R.E., 19, 1773-1842,

October, 1931.

P. S. Carter, Circuit Relations in Radiating Systems and Applications to Antenna
Problems, Proc. I.R.E., 20, 1004-1041, June, 1932.

2“The A.R.R.L. Antenna Book,” American Radio Relay League, Inc., West Hartford,

Conn., 1949, p. 174. Gives design charts,
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If the legs of the thin wire V antenna are terminated in their char-
acteristic impedance, as in Fig. 14-20c, so that the wires carry only an out~
going traveling wave, the back radiation is greatly reduced. The patterns
of the individual wires can be calculated, assuming a single traveling wave
as done in Chap. 5.

A similar effect may be produced without terminations by the use of
V conductors of considerable thickness. The reflected wave on such a
conductor may be small compared to the outgoing wave, and a condition
approaching that of a single traveling (outgoing) wave may result. For
example, a V antenna consisting of two cylindrical conductors 1.25 wave-
lengths long and % wavelength diameter with an included angle 8 = 90°
has the highly unidirectional pattern' of Fig. 14-20d.

14-10. Rhombic Antennas.” A rhombic antenna may be regarded as a
double-V type. The wires at the end remote from the feed end are in close

Axisof

V\rhombic
Terminating }a

resistance

Vertical pottern

(a) )

Fie. 14-21. Terminated rhombic antenna

(a) with azimuthal pattern (b) and vertical

plane pattern (¢) for a rhombic 6 wave-

Azimutha! pottern of X=10° lengths long on each leg, ¢ = 70°, and at a
height of 1.1 wavelengths above a perfectly

(b) conducting ground. (After A. E. Harper.)

proximity, as in Fig. 14-21a. A termination resistance, usually 600 to 800
ohms, can be conveniently connected at this location so that there is
substantially a single outgoing traveling wave on the wires. The length
of each leg is L, and one-half the included side angle is ¢. The calculated

1Chap. 4 by A. Dorne, “Very High Frequency Techniques,” Radie Research Labora-
tory Staff, McGraw-Hill Book Company, Inc., New York, 1947, p. 115.

2E. Bruce, Development in Short-wave Directive Antennas, Proc. I.E.E., 19, 1406~
1433, August, 1931.

E. Bruce, A. C. Beck, and L. R. Lowry, Horizontal Rhombic Antennas, Proc. I.R.E..
23, 24-46, January, 1935.

A. E. Harper, “Rhombic Antenna Design,” D. Van Nostrand Company, Inc., New
York, 1941.

Donald Foster, Radiation from Rhombic Antennas, Proc. I.R.E., 25, 13271353,
October, 1937,
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patterns' of a terminated rhombic with legs 6 wavelengths long are shown
in Fig. 14-21b and ¢. The rhombic is assumed to be 1.1 wavelengths above
a perfectly conducting ground, and ¢ = 70°.

In designing a rhombic antenna, the angle ¢, the leg length, and the
height above ground may be so chosen that (1) the maximum of the main
lobe coincides with the desired elevation angle « (alignment design), or
(2) so the maximum relative field intensity E for a constant antenna cur-
rent is obtained at the desired elevation angle o (mazimum E design).’
If the height above ground is less than that required for these designs,
alighment may be obtained by increasing the leg length. If the height is
maintained but the leg length is reduced, alignment may be obtained by
changing the angle ¢. Or as a third possibility, if both the height and the
leg length are reduced, the angle ¢ can be changed to produce alignment.
Any of these three modifications results in a so-called compromise design®
having reduced gain. If moderate departures from optimum performance
are acceptable, a rhombic antenna can be operated without adjustment
over a frequency band of the order of 2 to 1.

The pattern of a rhombic antenna may be calculated as the sum of the
patterns of four tilted wires each with a single outgoing traveling wave.
The effect of a perfectly conducting ground may be introduced by the
method of images. For a horizontal rthombic of perfectly conducting wire
above a perfectly conducting plane ground, Bruce, Beck, and Lowry® give
the relative field intensity E in the vertical plane coincident with the
rhombic axis* as a function of «, ¢, Ly, and H, as

_ (cos ¢)[sin (H, sin o)][sin (YL)I*

B v

(14-55)

where o = elevation angle with respect to ground
¢ = half included side angle of rhombic antenna

H, = H/\ = height of rhombic antenna above ground
L, = L/\ = leg length
H, = 2zH, = 2x(H/)\)

L, = 2xL, = 2xL/x
¢ = (1 — sin ¢ cos «)/2 ,
A constant antenna current is assumed, and mutual coupling is neglected.

From A. E. Harper, “Rhombic Antenna Design,” D. Van Nostrand Company, Ine.,
New York, 1941.

?E. Bruce, A. C. Beck, and L. R. Lowry, Horizontal Rhombic Antennas, Proc. I.R.E.,
23, 24-26, January, 1935.

* The radiation in this plane is horizontally polarized. However, in other planes the
polarization is not, in general, horizontal.
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Following the procedure of Bruce, Beck, and Lowry, the various designs
may be determined as follows. For the maximum ¥ condition, ¥ is maxi-
mized with respect to H,, that is, we make

ok
oH, ~ 0 (14-56)

which yields

cos (2rH, sin ) = 0

which is satisfied when

2rHysima = n

(ST

wheren = 1,3, 5,. ..
For the lowest practical height, n

i

1. Therefore,

1

oy = 4 sin «

(14-57)
Equation (14-57) gives the height H, for the antenna. To find the leg
length, K is maximized with respect to Ly, obtaining

1
~ 2(1 — sin ¢ cos a)

In (14-58)

Finally, by maximizing E with respect to ¢ and introducing the condition
of (14-58)
¢ = 90° — « (14-59)

Substituting (14-59) back into (14-58) yields

_ 1
2 sin® «

L, (14-60a)

Equations (14-57), (14-59), and (14-60a) then give the height in wave-
lengths H,, the half-side angle ¢, and the leg length in wavelengths L,, for
maximum I at the desired elevation angle a. This is for a constant antenna
current. It does not follow that the field intensity at the desired elevation
angle is a maximum for a given power input to the antenna. However,
it is probably very close to this condition. It is also of interest that for
the maximum £ condition the maximum point of the main lobe of radiation
is not, in general, aligned with the desired elevation angle.

In the alignment design the maximum point of the main lobe of radiation
is aligned with the desired elevation angle a. For this condition, E at a
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TABLE 14-4

DESIGN FORMULAS FOR TERMINATED RHOMBIC ANTENNAS*

Type of
rhombic antenna Formulas
1
H —
A 4sin
Maximum F at eleva- R
tion angle « ¢ =90° —«a
L, = 0 '25
sin” «
—_—
Alignment of major S e
lobe with elevation ¢ = 90° —a
angle a
0.371
L= sin®
, ¢ = 90° — «
Reduced height H’ s
Compromise design | y _ tan [(L,/2) sin” o] [ 1 H; :I
for alignment at ele- * sin & 2rsina  tan (H, sin a)
vation angle « , ,
where H{ = vil and H! = 2-)ri
A A
H)‘ = 4 1
Reduced length L’ i e
Compromise design . [:L{ — 0,371]
for alignment at ele- | ¢ = aresin L] cos @
vation angle o
where L{ = L’/\

Reduced height H’
and length L'
Compromise design
for alignment at ele-
vation angle «

Solve this equation for ¢:

H} 1

sin ¢ tan @ tan (H, sina) = 4wy  tan (YL)
— 1 4

where ¢ = Q%QM and L] = 21r£;\-

*After E. Bruce, A. C. Beck, and L. R. Lowry, Horizontal Rhombic Antennas,
Froc [.R.E.. 23.24-26, January, 1935,
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is slightly less than for the maximum £ condition. Alignment is accom-
plished by maximizing F with respect to e and introducing the condition
of (14-57). This gives

0.371

L = 1 — sin ¢ cos

(14-600)

Substituting (14-60b) in (14-55) and maximizing the resulting relation for
the field with respect to ¢ gives

¢ =90° -« (14-61)
as before. Finally substituting (14-61) in (14-60b) we obtain
0.371
LX - Si.nz @ (14_62)

Equations (14-57), (14-61), and (14-62) then give H,, ¢, and L, for align-
ment of the maximum point of the main lobe of radiation with the desired
elevation angle a. Only the length is different in the alignment design,
being 0.371/0.5 = 0.74 of the value for the maximum ¥ design.

The above design relations are summarized in Table 14-4 together with
design formulas for three kinds of compromise designs.

An end-to-end receiving array of a number of rhombics may be so con-
nected as to provide an electrically controllable vertical plane pattern
which can be adjusted to coincide with the optimum elevation angle of
downcoming waves. This Multiple Unit Steerable Antenna," or Musa, con-
stitutes the present-day ultimate for long-distance short-wave reception of
horizontally polarized downcoming waves.

14-11. Beverage or Wave Antenna.” The electric field of a wave travel-
ing along a perfectly conducting surface is perpendicular to the surface as
in Fig. 14-22a. However, if the surface is an imperfect conductor, such
as the earth’s surface or ground, the electric-field lines have a forward
tilt near the surface as in Fig. 14-22b. Hence, the field at the surface has a
vertical component E, and a horizontal component E.* The component
E, is associated with that part of the wave that enters the surface and is
dissipated as heat. The E, component continues to travel along the surface.

1H. T. Friis and C. B. Feldman, A Multiple Unit Steerable Antenna for Short-wave
Reception, Proc. I.R.E., 25, 841-917, July, 1937.

* H. H. Beverage, C. W. Rice, and E. W. Kellogg, The Wave Antenna, a New Type of
Highly Directive Antenna, Trans. A.I.E.E., 42, 215, 1923.

* Actually the wave exhibits elliptical cross-field, that is, the electrie vector describes
an ellipse whose plane is parallel to the direction of propagation. However, the axial
ratio of this ellipse is usually very large, and the field may be regarded as being linear.
For a discussion of cross-field see Chap. 9 by A. Alford, J. D. Kraus, and E. C. Barkofsky,
“Very High Frequency Techniques,” Radio Research Laboratory Staff, McGraw-Hill
Book Company, Inc., New York, 1947, p. 200.
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The fact that a horizontal component E, exists is applied in the Beverage
or wave type of antenna for receiving vertically polarized waves. This
antenna consists of a long horizontal wire terminated in its charaeteristic
impedance at the end toward the transmitting station as in Fig. 14-22¢.
The ground acts as the imperfect conductor. The emfs induced along the
antenna by the E. component, as the wave travels toward the receiver, all
add up in the same phase at the receiver. Energy from a wave arriving
from the opposite direction is largely absorbed in the termination. Hence,

E
gl Direction of Direction of
propagotion propagation
Ey
Ex
7000 / TSI 7
Perfect conductor Imperfect conductor
(a) (b)
E
4———-1-0 Termination
tronsmitfer g ' erminatiol Ex R
$ /
GILILLS TSI 1T TITII A7 0777777777 77
Ground
(¢)

F1c. 14-22, (a) Wave front over a perfect conductor. (b) Wave front over imperfect
conduetor. (c) Beverage or wave antenna.

the antenna exhibits a directional pattern in the horizontal plane with
maximum response in the direction of the termination (to left in Fig.
14-22¢). The Beverage antenna finds application in the low and medium
frequency range.

14-12. Curtain Arrays. In short-wave communications the curtain type
of array finds many applications. As an example, a curtain type is illus-
trated in Fig. 14-23a that consists of an array of -wavelength dipoles with
a similar curtain at a distance of about A/4 acting as a reflector. If the
array is large in terms of wavelengths, the reflector curtain is nearly
equivalent to a large sheet reflector.

tH. Briickmann, “Antennen, ihre Theorie und Technik,” S. Hirzel, Leipzig, 1939
p. 300.
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Several other examples of curtain arrays are the Bruce type of Fig.
14-23b, the Sterba type' of Fig. 14-23¢, and the Chireix-Mesny type® of
Fig. 14-23d. The arrows are located at or near current maxima and

2 7 F—2—
M ‘1%
=
P )

A
2

ot
s

:!E e P
N\

(a) (¢)

N>
~i>

Fic. 14-23. (a) Array of }-wavelength dipoles with reflectors, (b) symmetrical Bruce
antenna, (¢) Sterba curtain array, and (d) Chireix-Mesny array. Arrows indicate in-
stantancous current directions, and dots indicate current minimum points,

indicate the instantaneous current direction. The small dots indicate the
locations of current minima.

14-13. Location and Method of Feeding Antennas. It is interesting to
note the effect which the method and location of feeding has on the char-
acteristics of an antenna. As illustrations, let us consider the following
cases.

1E, J. Sterba, Theoretical and Practical Aspects of Directional Transmitting Systems,
Proc. I.R.E., 18, 1184-1215, July, 1931.

*H. Chireix, French System of Directional Aerials for Transmission on Short Waves,
Ezp. Wireless and Wireless Eng., 6, 235, May, 1929.
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Tf an antenna is fed with a balanced two-wire line, equal out-of-phase
gurrents must flow at the feed point. Thus, a square loop 1 wavelength
in perimeter and fed at the bottom as in Fig. 14-24¢ must have the current

A
3

A P

2 2

3

A
2 >
*{ *Ground plane
(a) (b)

i

ORLOP, Sh o

A
o

{c) (d) (e}
Fig. 14-24. (a) Loop with two-wire fced, (b) loop with one-wire feed, (¢) center-fed
broadside array of two }-wavelength dipoles, (d) end-fed end-fire array of two 3-wave-
length dipoles, and (¢) end-fed broadside array of two i-wavelength dipoles. Arrows
indicate instantancous current directions, and dots indicate current minimum points.

distribution indicated. The arrows indicate the instantaneous current
directions and the dots the locations of current minima. The radiation
normal to this loop is horizontally polarized.

Consider now the situation shown in Fig. 14-24b. Here the loop is fed
at the same location. However, the loop is continuous and is fed at a
point by an unbalanced line. In this case, the antenna currents flowing
to the feed point are equal and in phase so that the current distribution
on the antenna must be as indicated. The radiation normal to this loop
is vertically polarized.

The location at which an antenna is energized also may be important.
For example, two }-wavelength elements have in-phase currents when
symmetrically fed as in Fig. 14-24¢ but out-of-phase currents when fed
from one end as in Fig. 14-24d. For the currents to be in phase when the
array is fed from one end requires that the line between the elements be
transposed as in Fig. 14-24e.

14-14. Folded Dipole Antenna. A simple }-wavelength dipole has a
terminal resistance of about 70 ohms so that an impedance transformer is
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required to match this antenna to an ordinary open two-wire line of 300
to 600 ohms characteristic impedance (see Sec. 14-24). However, the
terminal resistance of the modified i-wavelength dipole shown in Fig.
14-25a is nearly 300 ohms so that it can be directly connected to an open
two-wire line having a characteristic impedance of the same value. This
type of antenna is called a folded dipole. More specifically the one in
Fig. 14-25a is a “‘two-wire folded %-wavelength dipole.”” The antenna

A }
z
A v
NP | LR
L ] —0
f 1 2-wire ? y L
d folded d 2
dipole
(a) (b)
I ]
]
fotded
dpole  (C)

Fi1c. 14-25. Folded dipoles.

consists of two closely-spaced 3-wavelength elements connected together
at the outer ends. The currents in the elements are substantially equal
and in phase.

Assuming that both conductors of the dipole have the same diameter,
the approximate value of the terminal impedance may be deduced very
simply as follows." Let the emf V applied to the antenna terminals be
divided between the two dipoles as in Fig. 14-25b. Then

v
E =1.Z,+ 12212 (14'63)

where I, = current at terminals of dipole 1
I, = current at terminals of dipole 2
Z,. = self-impedance of dipole 1
7, = mutual impedance of dipole 1 and 2

1R. W. P. King, H. R. Mimno, and A. H. Wing, “Transmission Lines, Antennas and
Wave Guides,” McGraw-Hill Book Company, Inc., New York, 1945, p. 224.

W. V. B. Roberts, Input Impedance of a Folded Dipole, RCA Rev., 8, 289-300, June,
1947. Treats folded dipoles with conductors of equal diameter and also of unequat
diameter.
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Since I, = I,, (14-63) becomes
V= 2II(Z11 + le) (14'64)

Further, since the two dipoles are close together, usually d is of the order
of 14y wavelength, Z,, ~ Z,,. Thus, the terminal impedance Z of the
antenna is given by

7 =+~ 47, (14-65)

~l=

Taking Z,, ~ 70 + jO for a -wavelength dipole, the terminal impedance
of the two-wire folded dipole becomes

Z ~ 280 ohms

t - 3
I
(a) (b)
- 3 ’ s
[ | ] C -

|

" - 1T
= I 7 ==Ft0

) 1
To}cllt/ \)

B2 (e)

Total 1

Fig. 14-26. (a). Three-wire folded i-wavelength dipole, (b) four-wire folded }-wave-
length dipole, (c) two-wire §-wavelength antenna, (d) four-wire $-wavelength antenna,
and (e) two-wire §-wavelength stub antenna. Arrows indicate instantaneous current
directions, and dots indicate current minimum points.
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For a three-wire folded j-wavelength dipole as in Fig, 14-25¢ the terminal
resistance calculated in this way is 9 X 70 = 630 ohms. In general, for
a folded i-wavelength dipole of N wires, the terminal resistance is 70N*
ohms.

Several other types of folded wire antennas' are shown in Fig. 14-26.
The one at (a) is a three-wire type which differs from the one in Fig. 14-25¢
in that there are no closed loops. The measured terminal resistance of
this antenna is about 900 ohms. The antenna at (b) is a four-wire type
with a measured terminal resistance of about 1,400 ohms. Thus far, all
the folded dipoles discussed have been %-wavelength types. The total
current, distribution for these types is nearly sinusoidal, the same as for
a simple 3-wavelength dipole. Folded dipoles of length other than %
wavelength' are illustrated in Fig. 14-26¢ and (d). The one at (¢) is a

two-wire type ¥ wavelength long and that at (d) is a four-wire type 2

8
wavelength long. The instantaneous current directions, the current dis-
tribution on the individual conductors, and the total current distribution
are also indicated. One-half the two-wire 2-wavelength dipole can be
operated with a ground plane as in Fig. 14-26¢, yielding the $-wavelength
stub antenna with total current distribution shown. The measured
terminal resistance of the two-wire §-wavelength dipole is about 450 ohms,
of the four-wire g-wavelength dipole about 225 ohms, and of the two-wire
3-wavelength stub antenna about 225 ohms.

14-15. Modifications of Folded Dipoles. Consider a two-wire folded
dipole shown in Fig. 14-27a. The terminal resistance is approximately
300 ohms. By modifying the dipole to the general form shown in Fig. 14-
27b, a wide range of terminal resistances can be obtained, depending on

—1i

2 | e

I ‘I l Folded dipoll ——l [—T-Jmotch
(a) ()

} 0.48\ !

l . }«To.lz)\——-i

~0,0001 to 0.001 )\-j ‘:]——' '——J T-match
~0.01A
0.01 d0o
c)

?.hm (
ne
Fi1a. 14-27. Folded dipole and T-match antennas.

1J. D. Kraus, Multi-wire Dipole Antennas, Electronics, 18, 26-27, January, 1940.
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the value of D. This arrangement is called a T-match antenna." Dimen-
sions in wavelengths for providing an impedance match to a 600-ohm line
are shown in Fig. 14-27c.

A two-wire folded i-wavelength dipole is also shown in Fig. 14-28a.
The arrows indicate the instantaneous current direction, and the small dots
indicate the locations of current minima. By pulling the dipole wires

|
N
7

—
I
(a) (0)
! A >
r @ |
> X
£ 3
i
(e)

Fig. 14-28. (a) Two-wire folded dipole and (b) as modified to form siugle turn loop.
(¢) Four-wire folded dipole and (d) as modified to form 2-turu loop.

apart at the center, the single-turn loop antenna of Fig. 14-28b is obtained.
The length of each side is 1 wavelength. The loop has a lower terminal
resistance than the folded dipole.

A four-wire folded }-wavelength dipole is shown in Fig. 14-28¢c. This
dipole is the same type as shown in Fig. 14-26b. 1t is, however, sketched
in a different manner. By pulling this dipole apart at the center the 2-
turn loop or so-called ‘“quad antenna” of Fig. 14-28d results.

The directivity of all the types shown in Fig. 14-28 is nearly the same
as for a simple }-wavelength dipole. With the loop types vertical and the
terminals at the lowest corner, the radiation normal to the plane of the
loops is horizontally polarized.

1J. D. Kraus and 8. 8. Sturgeon, The T-matched Antenna, QST, 24, 24-25, Septem-
ber, 1940.
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14-16. Ground-plane Antennas. Several types of ground plane or re-
lated antennas are shown in Fig. 14-29. The type at (a) has a vertical
$-wavelength stub with a circular sheet ground plane about 1 wavelength
in diameter. The antenna is fed by a coaxial transmission line with the
inner conductor connected to the }-wavelength stub and the outer con-
ductor terminating in the ground plane. In (b) the ground plane has been
modified to a skirt or cone shape. By replacing the }-wavelength stub
with a disc as in (c), a ‘“discone” antenna' is obtained. The dimensions

Axis
~0.25\

0,35\

o
[\
N>
2

I ~04X !

U (e)

NI)’

Cross section

,\,]—
24
J,

(d) Coaxial (e)
line

Fi1c. 14-29. (a) Stub antenna with flat circular ground plane, (b) same antenna with
ground plane modified to skirt or cone, (c) discone antenna, (d) stub antenna with four
radial conductors to simulate ground plane, and (¢) a method of feeding ground-plane
antenna.

given are appropriate for the center frequency of operation. In Fig.
14-29d the solid sheet ground plane is replaced by four radial conductors.
A modification of this antenna is shown at (¢) in which a short-circuited
1 wavelength section of coaxial line is connected in parallel with the
antenna terminals.” This widens the impedance band width (see Sec.

T A. G. Kandoian, Three New Antenna Types and Their Applications, Proc. I.R.E.,
34, T0W-75W, February, 1946.

A. G. Kandoian, W, Sichak, and G. A. Felsenheld, High Gain with Discone Antennas,
Proc. Natl. Electronics Conf., 8, 318-328, 1947.

? These radial conductor ground-plane antennas were originated by G. H. Brogn.
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14-24) and also places the stub antenna at d-¢ ground potential. This is
desirable to protect the transmission line from lightning surges.

With reference to solid sheet ground-plane antennas, it should be noted
that the radiation pattern of a vertical }-wavelength stub on a finite
ground sheet differs appreciably from the pattern with an infinite sheet.
This is illustrated by Fig. 14-30. The solid curve is the calculated pattern
with a ground sheet of infinite extent.
The dashed curve is for a sheet sev-
eral wavelengths in diameter and the
dotted curve for a sheet of the order
of 1 wavelength in diameter. With
finite solid sheet ground planes the
maximum radiation is generally not -
in the direction of the ground plane Fre. 14-30. Vertical-plane patterns of }-
but at an angle a above it. In order Wavelength stub antenna on infinite

. .. . ground plane (solid), and on finite ground
that maximum radiation be in the planes several wavelengths in diameter

horizontal plane, the ground plane (dashed) and about 1 wavelength in
may be modified as in Figs. 14-29b or  diameter (dotted).
(¢). The maximum radiation from
the discone antenna is nearly horizontal (normal to axis) over a considerable
band width."

By top loading a vertical stub antenna, it may be modified through the

£
; A
lines, / r‘_ /—\
Stub Top looded DISC
antenna stub antenno antenno
(a)

0.3X
E- Ixne\/‘\hO 25)\-‘7’/_,\

l Flush disc

Dvsc

~0.02)
(d)

Frg. 14-31. Evolution of flush disc antenna from vertical 3-wavelength stub antenna.

'A. G. Kandoian, Three New Antenna Types and Their Applications, Proc. I.R.E.,
84, 70W-75W. February, 1946.
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successive stages of Fig. 14-31 to the form in Fig. 14-31d. This antenna
consists of a circular disc with an annular slot between it and the ground
plane. The ground plane is depressed below the disc forming a shallow
cavity."'* The radiation pattern of the antenna at (d) is quite similar to
the pattern for the vertical stub at (a).?

14-17. Sleeve Antennas. Carrying the ground-plane modification of
Tig. 14-20b, a step further results in the vertical }-wavelength sleeve
antenna of Iig. 14-32a. Here the ground plane has degenerated into a

Axis
—
A 4
_*_ ~d N
4 5
2 i Nlu.g
R ¥
(a) (8)

14

~

|

4

,.
@t — le—— o —n

-

da<a

'L

(c)

Frg. 14-32. (a) i-wavelength sleeve antenna, (b) sleeve antenna above ground plane,
and (c) balanced sleeve antenna.

1A. A. Pistolkors, Theory of Circular Diffraction Antenna, Proc. I.R.E., 86, 56-60,
January, 1948,

2D. R. Rhodes, Flush-mounted Antenrs for Mobile Application, Electronics, 22,
115-117, March. 1049
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sleeve or cylinder § wavelength long. Maximum radiation is normal to

the axis of this antenna.

Another variety of sleeve antenna is illustrated in Fig. 14-32b." The
antenna is similar to a stub antenna with ground plane but with the feed
point moved to approximately the center of the stub. This is accom-
plished by enclosing the lower end of the stub in a cylindrical sleeve. By
varying the characteristic impedance of this }-wavelength-long section,
some control is afforded over the impedance presented to the coaxial line
at the ground plane.

A balanced sleeve dipole antenna corresponding to the sleeve stub type
of Fig. 14-32b is iilustrated in Fig. 14-32¢. It is shown with a coaxial line
feed and balance-to-unbalance transformer or balun.! This antenna may
be operated over a frequency range of about 2 to 1 such that 7. is in the
range from about % to 1 wavelength.

14-18. Slotted Cylinder Antennas.” A slotted sheet antenna is shown
in Fig. 14-33a. By bending the sheet into a U-shape as in (b) and finally

| @
el (U

Fra. 14-33. Evolution of slotted cylinder from slotted sheet.

into a cylinder as in (c), we arrive at a slotted cylinder antenna. The
impedance of the path around the circumference of the cylinder may be

IChap. 5 by E. L. Bock, J. A. Nelson, and A. Dorne, “Very High Frequency Tech-
niques,” Radio Research Laboratory Staff, McGraw-Hill Book Company, Inc., New
York, 1947.

2George Sinclair, The Patterns of Slotted Cylinder Antennas, Proc. I.R.E., 36, 1487~
1492, December, 1948.

A. Alford, Long Slot Antennas, Proc. Natl. Electronics Conf., 1946, p. 143.

E. C. Jordan and W. E. Miller, Slotted Cylinder Antennas, Electronics, 20, 90-93,
February, 1947.

A, Alford, Antenna for F-M Station WGHF, Communications, 26, 22, February,
1946.
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sufficiently low so that most of the current tends to flow in horizontal
loops around the cylinder as suggested. If the diameter D of the cylinder
is a sufficiently small fraction of a wavelength, say, less than § wavelength,
the vertical slotted cylinder radiates a horizontally polarized field with a
pattern in the horizontal plane which is nearly circular.' As a diameter
of the cylinder is increased, the pat-
tern in the horizontal plane tends to
become more unidirectional with the
maximum radiation from the side of
the cylinder with the slot. For reso-
nance the length L of the slot is

greater than % wavelength. This

%:' may be explained as follows. Refer-
ring to Fig. 14-34a, the two-wire
transmission line is resonant when it
is 3 wavelength long. However, if

JL/

this line is loaded with a series of

(a) loops of diameter D as at (b), the

Fie. 14-34. Slotted cylinder as a loop phase velocity of wave transmission

loaded transmission line. on the line can be increased, so that

the resonant frequency is raised.

With a sufficient number of shunt loops the arrangement of (b) becomes

equivalent to a slotted cylinder of diameter D. Typical slotted cylinder
dimensions are D = 0.125 A\, L = 0.75 A, and the slot width about 0.02 \.

This type of antenna has found considerable application for broadcasting
a horizontally polarized wave with an omnidirectional or circular pattern
in the horizontal plane. Vertical plane directivity may be increased by
using a long cylinder with stacked, that is, collinear, slots.

14-19. Turnstile Antennas.” Consider two crossed infinitesimal dipoles
energized with currents of equal magnitude but in phase quadrature. This
arrangement, shown in plan view in Fig. 14-35a, produces a circular pattern
in the 8 plane since the field pattern £ as a function of 6 and time is given by

E = sin 6 cos wt + cos 8 sin wi (14-66)

which reduces to
E = sin (0 + of) (14-67)

At any value of 6 the maximum amplitude of E is unity at some instant
during each cycle. Hence, the rms field pattern is circular as shown by

1George Sinclair, The Patterns of Slotted Cylinder Autennas, Proc. I.R.E., 36, 1487-

1492, December, 1948.
2. H. Brown, The Turnstile Antenna, Electronics, 9, 15, April, 1936.
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the circle in Fig. 14-35b. At any instant of time the pattern is a figure of
eight of the same shape as for a single infinitesimal dipole.” An instan-
taneous pattern is shown in Fig. 14-35b for wt = 135°. As a function of
time this pattern rotates, completing 1 revolution per cycle. In the case
being considered in Fig. 14-35, the pattern rotates elockwise. Thus, the
phase of the field as a function of 6 is given by 8 4+ «t = constant, and if the
constant is zero by

wt= —0 (14-68)

If the field is a maximum in the direction § = 0 at a given instant, then
according to (14-68) the field is a maximum in the § = —45° direction %
period later.

The above discussion concerns the field in the ¢ plane (plane of the
crossed dipoles). The field in the axial direction (normal to the crossed-
infinitesimal dipoles) has a econstant magnitude given by

|E | = v/cos® wt + sin’ wt = 1 (14-69)

Thus, the field normal to the infinitesimal dipoles is circularly polarized.’
In the case being considered in Fig. 14-35 the field rotates in a clockwise
direction.

Replacing the infinitesimal dipoles by i-wavelength dipoles results in a
practical type of antenna with approximately the same pattern char-
acteristics. This kind of antenna is called a turnstile antenna.®> Since the
pattern of a 3-wavelength element is slightly sharper than for an in-
finitesimal dipole, the §-plane pattern of the turnstile with 3-wavelength
elements is not quite eircular but departs from a circle by about =5 per
cent. The relative pattern is shown in Fig. 14-35¢. The relative field as
a function of 6 and time is expressed by

cos (90° cos 6)
—————— 05
sin 6

cos (90° sin 6)

E = cos 8

wt 4 sin wit (14-70)

Although the ¢-plane pattern with }-wavelength elements differs from
the pattern with infinitesimal dipoles, the radiation is circularly polarized
in the axial direction from the 3-wavelength elements provided that the
currents are equal in magnitude and in phase quadrature.

A turnstile antenna may be conveniently mounted on a vertical mast.
The mast is coincident with the axis of the turnstile. To increase the
vertical plane directivity, several turnstile units can be stacked at about
3-wavelength intervals as in Fig. 14-35d. The arrangement at (d) is called

1See Secs. 15-10 to 15-17, for a more detailed discussion of eircular polarization.
*G. H. Brown, The Turnstile Antenna, Electronics, 9, 15, April, 1936.
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a “four-bay”’ turnstile. It requires two bays to obtain a field intensity
approximately equal to the maximum field from a single %-wavelength
dipole with the same power input.

In order that the currents on the 3-wavelength dipoles be in phase quad-
rature, the dipoles may be connected to separate nonresonant lines of

X

M v

Dipole 2
“Dipole | Instantaneous
pottern
at wt=135°
Rms pattern
(a) (b)
—
.
K X
e Y2
Hul'f-wuve ‘7"4'/Vertical mast at
dipoles axis of turnstiles
(¢) ()

l«—Half-wove dipole

Series
reacfunce\
E /Half—wove dipole 2
L ]

F1a. 14-35. Turnstile antenna arrangements.

unequal length. Suppose, for example, that the terminal impedance of
each dipole in a single-bay turnstile antenna is 70 4 jO ohms. Then by
connecting 70-ohm lines (dual coaxial type), as in the schematic diagram
of Fig. 14-35¢, with the length of one line 90 electrical degrees longer than
the other, the dipoles will be driven with currents of equal magnitude and
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in phase quadrature. By connecting a 35-ohm line between the junction
point P of the two 70-ohm lines and the transmitter, the entire trans-
mission-line system is matched.

Another method of obtaining quadrature
currents is by introducing reactance in series
with one of the dipoles." Suppose, for exam-
ple, that the length and diameter of the dipoles
in Fig. 14-35f result in a terminal impedance
of 70 — ;70 ohms. By introducing a series
reactance (inductive) of +;70 ohms at each
terminal of dipole 1 as in Fig. 14-35f, the
terminal impedance of this dipole becomes
70 4 570 ohms. With the two dipoles con-
nected in parallel, the currents are

_V
70 + 70

and I, =

I, =

v
70— 70 (4T
where ¥V = impressed emf

I, = current at terminals of dipole 1

I, = current at terminals of dipole 2
Thus,

I, = 9—1; 450
Fig. 14-36. Six-bay superturn-
stile antenna. (Courtesy Radio
and I, 99 / +45°  (14-72) Corporation of America.)

so that I, and I, are equal in ‘magnitude, but I, leads I, by 90°. The two
impedances in parallel yield ’
1 1

=¥ = [i/G0 + 7701 + G/G0 — jaoyy ~ [0 FH0 ohms (1473

so that a 70-ohm (dual coaxial) line will be properly matched when con-
nected to the terminals FF.

In order to obtain a very low SWR over a considerable band width, the
turnstile described above has been modified to the form shown in the
photograph of Fig. 14-36. In this arrangement, called a “superturnstile,”
the simple dipole elements are replaced by flat sheets or their equivalent.”

1G. H. Brown and J. Epstein, A Pretuned Turnstile Antenna, Electronics, 18, 102-107,
June, 1945.

2R. W. Masters, The Super-turnstile Antenna, Broadcast News, 42, January, 1946,
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Each ‘““dipole”” is equivalent to a slotted sheet about 0.7 A by 0.5 A as
in Fig. 14-37a. The terminals are at FF. As in the slotted cylinder
antenna, the length of the slot for resonance is more than { wavelength
(about 0.7 A). The dipole can be mounted on a mast as in Fig. 14-37b.
To reduce wind resistance, the solid sheet is replaced by a grid of con-
ductors. Typical dimensions for the center frequency of operation are
shown. This arrangement gives a SWR of about 1.1 or less over about a
30 per cent band width, which makes it convenient as a mast-mounted
television transmitting antenna for frequencies as low as about 50 Me.
Unlike the simple turnstile there is relatively little radiation in the axial

Steel mast
f0.23)+

/

=
| >_< 4\ 0.65\

:—4——/\;% —> ‘\Solid sheet

~ 0.7

(a) (b) —l-~0.025x
Fie. 14-37. Single dipole element of superturnstile antenna. (a) Solid sheet con-
struciion, () tubing construction showing method of mounting on mast.

direction (along the mast), and only one bay is required to obtain a field
intensity approximately equal to the maximum field from a single 3}-
wavelength dipole with the same power input. For decreased beam width
in the vertical plane the superturnstile bays are stacked at intervals of
about 1 wavelength between centers. '

14-20. Other Omnidirectional Antennas. The radiation patterns of
slotted cylinder and the turnstile antennas are nearly circular in the hori-
zontal plane. Such antennas are sometimes referred to as omnidirectional
types, it being understood that “omnidirectional” refers only to the hori-
zontal plane.

As shown in Chap. 6, a circular loop with a uniform current radiates
a maximum in the plane of the loop provided that the diameter D is less
than about 0.58 wavelength. The pattern is doughnut shaped with a null
in the axial direction as suggested by the vertical plane cross section in
Fig. 14-38a.
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One method of simulating the uniform loop is illustrated in Fig. 14-38b.
Here four smaller loops are connected in parallel across a coaxial line.
This arrangement is called a “cloverleaf” antenna." Another method is
shown in Fig. 14-38¢, three folded dipoles being connected in parallel

Vertical
.oxis Horizontal
loop
P

Vertical

plane Effective

pattern diameter

(a) 03N

(b)

Coaxial
* e

[" Effective diameter | () (d)

F1e. 14-38. Circular loop antenna (a) and approximately equivalent arrangements of
“clover-leaf” type (b), ‘“triangular-loop” type (¢), and square loop, or Alford type (d).

across a coaxial line.” A third method utilizing a square loop is illustrated
in Fig. 14-384.> The terminals are at FF. The side length L may be of
the order of 1 wavelength. A single equivalent loop or bay of any of
these types produces approximately the same field intensity as the maxi-
mum field from a single i-wavelength dipole with the same power input.
For increased directivity in the vertical plane, several loops may be stacked,
forming a multibay arrangement.

14-21. Circularly Polarized Antennas. Circularly polarized radiation
may be produced with various antennas. The axial mode helical antenna

1P, H. Smith, Cloverleaf Antenna for FM Broadeasting, Proc. I.R.E., 36, 1556-1563,
December, 1947.

2A. G. Kandoian and R. A. Felsenheld, Triangular High-band TV Loop Antenna
System, Communications, 29, 16-18, August, 1949.

3A. Alford and A. G. Kandoian, Ultra-high Frequency Loop Antennas, Trans.
A.LE.E., b9, 843-848, 1940,
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Half-wave
/ dipoles \

—_ - i—r
Axis Axis
(c)
-
T | Siotted
cylinder
% i
4 ;
Iy
F e’ F’
D Fe—g F’
T i
At
2 b
Coaxial
lines J_
\_/
(d) (e) ()

Fic. 14-39. Antenna types for circular polarization.

(Fig. 14-39a) is a simple, effective type of antenna for generating circular
polarization. The helix is discussed in Chap. 7. Circular polarization may
also be produced in the axial direction from a pair of crossed 3-wavelength
dipoles with equal currents in phase quadrature (Fig. 14-39b). This was
mentioned in connection with the turnstile antenna. If radiation in one
axial direction is right circularly polarized, it is left circularly polarized in
the opposite axial direction.

A third type of circularly polarized antenna consists of two in-phase
crossed dipoles separated in space by $ wavelength as in Fig. 14-39c.
With this arrangement the type of circular polarization is the same in
both axial directions.

Any of these three arrangements can serve as a primary antenna that
illuminates a parabolic reflector. Or they can be placed within a circular
wave guide so as to generate a circularly polarized TE,, mode wave. By
flaring the guide out into a conical horn, a circularly polarized beam can
be produced.

Another technique by which a circularly polarized beam may be obtained
with a parabolic reflector of large focal length with respect to the diameter
is with the aid of a metal grid or grating of parallel wires spaced § wave-
length from the reflector and oriented at 45° with respect, to the plane
of polarization of the wave from the primary antenna. The primary
antenna in this case is linearly polarized.
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Three arrangements for producing an omnidirectional pattern of cir-
cularly polarized radiation are illustrated by Figs. 14-39d, (e), and (f).
At (e) four short axial mode helices of the same type are disposed around
a metal cylinder with axis vertical and fed in phase from a central coaxial
line." In the system at (e) vertically polarized omnidirectional radiation is
obtained from two vertical I-wavelength cylinders when fed at FF and
horizontally polarized omnidirectional radiation is obtained from the slots
fed at F'F’. By adjusting the power and phasing to the two sets of termi-
nals so that the vertically polarized and horizontally polarized fields are
equal in magnitude and in phase quadrature, a circularly polarized omni-
directional pattern is produced.? At (f) four in-phase 3-wavelength dipoles
are mounted around the circumference of an imaginary circle about %
wavelength in diameter.® Itach dipole is inclined to the horizontal plane
as suggested in the figure.

In general, any linearly polarized
wave can be transformed to an ellip-  Dielectric l,LfA
tically or circularly polarized wave, SI00S —TE3 3 A ]
or vice versa, by means of a wave
polarizer.* For example, assume
that a linearly polarized wave is /
traveling in the negative z direction /’ £
and that the plane of polarization is
at a 45° angle with respect to the L~ '
positive z axis (Fig. 14-40). Suppose X
that this wave is incident on a large 2
grating of many dielectric slabs of Fro. 14-40. Wave polarizer.
depth L with air spaces between. A
section of this grating is shown in Ifig. 14-40. The slab spacing (in z
direction) is assumed to be a small part of a wavelength.

The incident electric field E can be resolved into two components, one
parallel to the x axis (E,) and the other parallel to the y axis (£,). That
is, E = iE, + jE,. The z component (E,) will be relatively unaffected
by the slabs. Mowever, E, will be retarded (velocity reduced). If the
depth L of the slabs is just sufficient to retard E, by 90° in time phase
behind E., the wave emerging from the back side of the slabs will be cir-

Y

1J. D. Kraus, Helical Beam Antcuna for Wide-band Applications, Proc. [.R.E., 36,
1236-1242, October, 1948,

tC. E. Smith and R. A. Fouty, Circular Polarization in F-M Broadcasting, Electronics,
21, 103-107, September, 1948,

3G. H. Brown and O. M. Woodward, Jr., Circularly-polarized Omnidirectional
Antenna, RCA Rev., 8, 259269, June, 1947.

*F. Braun, “Elektrische Schwingungen und drahtlosc Telegraphie,” Jahrbuch der
drahtlosen Telegraphic und T'elephonie, Vol. 4, No. 1, 1910, p. 17.
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cularly polarized if | E, | = | E, |. Viewing the approaching wave from &
point on the negative 2 axis, the E vector rotates clockwise.

If the depth of the slabs is increased to 2L, the wave emerging from
the back side will again be linearly polarized since £, and E, are in op-
posite phase, but E is at a negative angle of 45° with respect to the positive
z axis. Increasing the slab depth to 3L makes the emerging wave circularly
polarized but this time with a counterclockwise rotation direction for E
(as viewed from a point on the negative z axis). Finally, if the slab depth
is increased to 4L, the emerging wave is linearly polarized at a slant
angle of 45° the same as the incident wave. The dielectric grating in this
example behaves similar to the atomic planes of a uniaxial erystal, such
as calcite or rutile, to the propagation of light. For such crystals the
velocity of propagation of light, linearly polarized parallel to the optic
axis, is different than the velocity for light, linearly polarized perpendicular
to the optic axis.

14-22. Receiving vs. Transmitting Considerations. According to the
principle of reciprocity the field pattern of an antenna is the same for
reception as for transmission. However, it does not always follow that
because a particular antenna is desirable for a given transmitting appli-
cation 1t is also desirable for reception. In transmission the main
objective is usually to obtain the largest field intensity possible at the
point or points of reception. To this end, high efficiency and gain are
desirable. In reception, on the other hand, the primary requirement is
usually a large signal-to-noise ratio. Thus, although high efficiency and
also gain may be desirable, they are important only insofar as they improve
the signal-to-noise ratio. As an example, a receiving antenna with the
pattern of Fig. 14-41a¢ may be preferable to a higher gain antenna with

—a L
interfering Desired el @ -
signal signal \ /

Interfering Desired
signal signal

(a) (b)

Frc. 14-41. Patterns for discussion on receiving antennas.

the more directional pattern of Fig. 14-41b, if there is an interfering signal
or noise arriving from the back direction as indicated. Although the gain
of the antenna with the pattern at (a) is less, it may provide a much higher
signal-to-noise ratio since its pattern has a null directed toward the source
of the noise or interference.

However, by way of contrast suppose that circuit noise in the receiver
is the limiting factor. Then high antenna gain and efficiency would be
important in order to raise the signal-to-noise ratio.
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There is a special class of receiving antennas that finds application in
direction finding. The directional characteristic of the antenna is em-
ployed to determine the direction of arrival of the radio wave. If the
signal-to-noise ratio is high, a null in the field pattern may be used to find
the direction of arrival." With a low signal-to-noise ratio, however, the

aximum of the main lobe may provide a more satisfactory indication.?

14-23. Band-width Considerations. The useful band width of an an-
tenna depends, in general, on both its pattern and impedance character-
igtics. In thin dipole antennas the band width is usually determined by
the impedance variation since the pattern changes less rapidly.? However,

ith very thick cylindrical antennas or biconical antennas of considerable
cone angle, the impedance characteristics may be satisfactory over so wide
a band width that the pattern variation determines one or both of the
frequency limits. The pattern may also determine the useful band width
of horn antennas, metal-plate lens antennas, or zoned lens antennas.

If the acceptable band width for pattern exceeds that for impedance,
the band width can be arbitrarily specified by the frequency limits F,
and F; at which the SWR on the transmission line exceeds an acceptable
value. What is aceeptable varies widely depending on the application. In
some cases the SWR must be close to unity. In others it may be as high as
10 to 1 or higher. The frequency band width can be specified as the ratio of
F, — F, to F, or in per cent as

F, — F,
——— X 100
7. X

where F, = the center or design frequency
The band width due to the impedance can also be specified (if the band
width is small) in terms of its reciprocal or Q at F, where

- 2 total energy stored by antenna
energy dissipated or radiated per cycle

In some instances an attempt is made to obtain as much gain as possible
from an antenna of given physical size* or conversely to obtain a given

1R. Keen, “Wireless Direction Finding,” Iliffe and Sons, Ltd., London, 1938.

D. 8. Bond, “Radio Direction Finders,” McGraw-Hill Book Company, Inc., New
York, 1944.

2Chap. 9, A. Alford, J. D. Kraus, and E. C. Barkofsky, “Very High Frequency Tech-
nigues,” Radio Research Laboratory Staff, McGraw-Hill Book Company, Inc., New
York, 1947,

3A dipole § wavelength long has a half-power beam width of 78°. If the frequency is
reduced so that the dipole length approaches an infinitesimal fraction of a wavelength,
the beam width only increases from 78° to 90°, while if the frequency is doubled so that
the dipole is 1 wavelength long the beam width decreases from 78° to about 47°,

{That is, a high gain-to-size ratio.
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gain with as small an antenna as possible. Such attempts generally
reduce the band width of the antenna and also decrease its radiating
efficiency. This effect was discussed in Chap. 11 where it was pointed out
that a spacing of less than about {4 wavelength between parallel out-of-
phase 1-wavelength elements is usually impractical because of reduced band
width and efficiency. The rapidity with which the band width and effi-
ciency fall off if the gain-to-size ratio is increased too far has been empha-
sized by Chu' and by Taylor.> The limitations imposed are particularly
severe for arrays that are large in terms of the wavelength, and it may be
concluded that it is impractical to attempt any appreciable increase in di-
rectivity with a large broadside array or aperture of fixed size over that
given with a uniform aperture distribution.

14-24. Matching Arrangements. Impedance matching between a trans-
mission line and antenna may be accomplished in various ways.® As
illustrations, several methods for matching a transmission line to a simple
3-wavelength dipole will be considered. Suppose that the antenna is a
ceylindrical dipole with a length diameter ratio of 60 (L/D = 60) and that
the measured terminal impedances at 5 frequencies are as follows:

Frequency Antenna length Terminal impedance
1.15F, L =053 » 110 4 790
1.07F, L =049 80 + 740
Fy = center frequency L =046 ) 65 + j0
0.93F, L =043 52 — 740
0.85F, L =039 40 — 7100

The center frequency F, corresponds to the resonant frequency of the
antenna. At this frequency the terminal impedance is 65 + 70 ohms.

The most direct arrangement for obtaining an impedance mateh is to
feed the dipole with a dual coaxial transmission line of 65 ohms character-
istic impedance as in Fig. 14-42a. The variation of the antenna impedance
referred to 65 ohms is shown by the solid curve in the Smith chart* of

11,. J. Chu, Physical Limitations of Omni-directional Antennas, J. Applied Phys., 19,
1163-1175, December, 1948.

2T. T. Taylor, A Discussion of the Maximum Directivity of an Antenna, Proc. I.R.E.,
36, 1135, September, 1948.

30nly arrangements with transmnission-line elements will be described. These are
convenient at high frequencies. However, at low or medium frequencies the length of the
required transmission-line sections may be inconveniently large so that it is the usual
practice to use matching circuits with lumped elements. Radio-frequency transformers,
x, T, and L sections are employed in this application. See, for example, W. L. Everitt,
“Communication Engineering,” McGraw-Hill Book Company, Inc., New York, 1937,
Chap. 8.

‘P. H. Smith, An Improved Transmission Line Calculator, Elecironics, 17, 130,
January, 1944,
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Fig. 14-43. The normalized impedances plotted on the chart are obtained
by dividing the antenna terminal impedances by 65. The SWR on the
65-ohm line as a function of frequency and antenna length is presented

by the solid curve in Fig. 14-44,

1 L M
[y g Z
3 \Cylindrical
half-wave dipole
antenna
Z, BX
F=s0 "~ 65-0hm
dual coaxial
line
(a) Z
(b)
1 | K
L L
R Za | Ly 65 1
D¢ DT Zo=
108
= A L=60
%at F 2,=180 ohms ?ag: )
Fe—
L. Impedance
'5_60 | transformer N 180
Zy
[ A at— Z,=
500 ohm s % 330
open 2-wire o
line L
! 500
{c) (d) 2,2500
‘(——l _—,i M
¢ Open ended A%
4 Compensating ] 65 ohm dual
S line coaxial line
—] Matching o
/
stub [~ — & -
T Cylindrical ¥ 3
A half-wave dipole
3 l«— 65 ohm dual
—L %:60 coaxial line
=3, 18
(e) 69

F1a. 14-42. Matching arrangements for cylindrical }-wavelength dipole antenna.

The dipole antenna may also be energized with a two-wire open type of
transmission line. Since the characteristic impedance of convenient sizes
of open two-wire line is in the range of 200 to 600 ohms, an impedance

transformer is reqguired between the line and the antenna.
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st Holf-wave antenna and 65-ohm line
—————— Half-wave antenna and 500-ohm line with one%trunsformer
—-—. —— Half-wave antenna and 500-ohm line with two % transformers

Fig. 14-43. Normalized impedance variation for eylindrical -wavelength dipole an-
tenna (L/D = 60) fed directly by 65-ohm line (solid), by a 500-ohm line with one
1-wavelength transformer (dashed), and by a 500-ohm line with two }-wavelength
transformers in series (dash-dot).

transformer design may be deduced as follows. Referring to Fig. 14-42b,
the impedance Zx at the terminals of a lossless transmission line terminated
in an impedance Z, is

_ g, Zact i tan B

Zs = 20 G 7 tan B

(14-74)

where 8z = (2r/A\)z = length of line, radians
Z, = characteristic impedance of the transmission line (since the
line is assumed to be lossless, Z, is a pure resistance)
Equation (14-74) may be reexpressed as

_,, (Za/tan Bz) + jZ, .
Zz = 2 (Zo/tan Bz) + jZ 4 (14-75)
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When the line is 1 wavelength long (8z = 90°), (14-75) reduces to
_Z
Zp = Z,
or
72 = Z,7s (14-76)
or
Zy = '\/ZAZB (14-77)

If Z, is the antenna terminal impedance and Zjy is the character-
istic impedance of the transmission line we wish to use, the two can be
matched with a i-wavelength section having a characteristic imped-
dance Z, given by (14-77). The ar-
rangement is shown in Fig. 14-42c.
At the center frequency, Z, = 65.
Supposing that the characteristic im-
pedance of the line we wish to use is 4
500 ohms (Zp = 500), we have from
(14-77) that the characteristic imped-
ance of the }-wavelength section should
be Z, = 180 ohms. 3

This type of transformer gives a per-
fect match (zero reflection coefficient)
at only the center frequency. At a
higher frequency the antenna imped- 2
ance is different, and the line length is
also greater than } wavelength. The
resultant impedance variation with fre-
quency on the 500-ohm line for the

S

L/D = 60-dipole antenna and 180-ohm 0 o s TE e 2
transformer (\/4 at F,) is shown by the ’ ' R ' ‘
dashed curve in Fig. 14-43, and the Relative frequency

SWR (standing-wave ratio) on the 500- Fia. 14-44. SWR as a function of an-

ohm line is indicated by the dashed
curve in Fig. 1444, I is apparent that
this arrangement is more frequency-
sensitive than the arrangement with
the dual coaxial 65-ohm line.

tenna length I in wavelengths and as
a function of the frequency (the reso-
nant frequency Fy is taken as unity).
The SWR curves are for the same three
cases of Fig. 14-43,

Instead of making the transformation from the 500-ohm line to the an-

tenna in a single step with a single-section transformer, two sections may
be connected in series as in Fig. 14-42d. FEach is 1 wavelength long at
the center frequency F,. At F, the first section (Z, = 108) transforms
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the antenna resistance of 65 ohms to 180 ohms. The second section
(Z, = 300) transforms this to 500 ohms. The antenna and line are per-
fectly matched at only the center frequency, as before. However, this
two-section arrangement is less frequency-sensitive than the single section.
The normalized impedance variation with the two-section transformer is
indicated by the dash-dot curve in Fig. 14-43, and the SWR on the 500-
ohm line is shown by the dash-dot dotted curve in Fig. 14-44.

If the number of sections in the transformer is increased further, it
should be possible to approach closer to the frequency sensitivity with
the direct connected 65-ohm line.! As the number of sections is increased
indefinitely, we approach in the limit a transmission line tapered gradually
in characteristic impedance over a distance of many wavelengths.® At
one end the line has a characteristic impedance equal to the antenna re-
sistance (65 ohms in the example) and at the other end has a characteristic
impedance equal to that of the transmission line we wish to use (500 ohms
in the example).

Another more frequency-sensitive method of matching a 500-ohm line to
a 3-wavelength dipole is with a stub® as shown in Fig. 14-42e. The line
between the stub and the transmitter may be nonresonant or perfectly
matched to the antenna at one frequency with the stub as shown. The
stub may also be placed } wavelength farther from the antenna as shown
by the dashed lines.* In this case, however, the resonant line between
the stub and antenna is longer, and this arrangement is more frequency-
sensitive than with the stub closer to the antenna. In general, it is de-

1The logarithms of the impedance ratios may be made to correspond to a set of
binomial coefficients. (See J. C. Slater, “Microwave Transmission,” McGraw-Hil
Book Company, Inc., New York, 1942, p. 60.) Thus, the logarithms of the impedance
ratios for two-, three-, and four-section transformers would be as follows:

two-sections: 1,2, 1
three-sections: 1, 3, 3, 1
four-sections: 1,4, 6,4, 1

In the two-section transformer of Fig. 14-42d these ratios are followed since

) 108 ) 300 ) 500
%5 %108’ %300
2C, R. Burrows, The Exponential Transmission Line, Bell System Tech. J., 17, 555~
573, October, 1938.
H. A. Wheeler, Transmission Lines with Exponential Taper, Proc. [.R.E., 2T, 65-71,
January, 1939.
3F, E. Terman, “Radio Engineers’ Handbook,” McGraw-Hill Book Company, Inc.,
New York, 1943, pp. 187-191. Gives design charts for open stub, closed stub, and
reentrant matching arrangements.
4In general, the distance of the stub from the antenna can be increased by nx/2 where
n is an integer.
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sirable to place matching or compensating networks as close to the antenna
as possible if frequency sensitivity is to be a minimum.

With the single stub as in Fig. 14-42¢ both the length of the stub and
its distance S from the antenna are adjustable. The stub may be open
or short-circuited at the end remote from the line, the stub length being
1 wavelength different for the two cases. To adapt this arrangement to
a coaxial line requires that a line stretcher be inserted between the stub
and the antenna. An alternative arrangement is a double stub tuner
which has two stubs at fixed distances from the antenna but with the
lengths of both stubs adjustable.’

The frequency sensitivity® of a dipole antenna may be made less than
for the L/D = 60 dipole direct-connected to a 65-ohm line, as above, in
several ways. A larger diameter dipole can be used (smaller L/D ratio)
since, as shown in Chap. 9, the impedance variation with frequency is
inherently less for thick dipoles as compared to thin dipoles. The thick
dipole is desirable for very wide-band applications. If such a dipole is
inconvenient, the impedance variation can often be reduced over a moder-
ate band width by means of a compensating network. For example, the
frequency sensitivity of the L/D = 60 dipole with direct-connected 65-
ohm line can be reduced over a considerable band width by connecting a
compensating line in parallel with the antenna terminals as in Fig. 14-42f.
If this line or stub has an electrical length of £ wavelength at the center
frequency and has a 65-ohm characteristic impedance, the same as the
transmission line, the variation of normalized antenna terminal impe-
dance with frequency, as referred to 65 ohms, is shown by the dash-dot
curve in Fig. 14-45a. The variation without compensation (antenna of
Fig. 14-42a) is given by the solid curve (same curve as in Fig. 14-43). The
SWR on a 65-ohm line are compared in Fig. 14-45b for the antenna without
compensation (solid curve) and with the compensating stub (dash-dot
curve). The frequency sensitivity of the compensated arrangement is
appreciably less over the frequency range shown. For instance, the band
width for SWR < 2 is about 14 per cent for the uncompensated dipole
but is about 18 per cent for the compensated dipole.

The action of the parallel-connected compensating line or stub is as
follows. At the center frequency ¥, it is 180° in length. Since it is open

!These arrangements are discussed in many texts on transmission lines. See, for
example,

R. W. P. King, H. R. Mimno, and A. H. Wing, “Transmission Lines, Antennas, and
Wave Guides,” McGraw-Hill Book Company, Inc., New York, 1945, Chap. 1.

E. W. Kimbark, “Electrical Transmission of Power and Signals,” John Wiley and
Sons, Inc., New York, 1949, Chap. 13.

*Frequency sensitivity as used here refers only to impedance. The pattern of an
antenna also varies with frequency.
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ended, it places an infinite impedance across the antenna terminals and
has no effect. At a frequency slightly above ¥, the line becomes capacita-
tive. Hence, it places a positive susceptance in parallel with the antenna
admittance which at this frequency has a negative susceptance.' Admit-

L

0.40 0.4
La

Half-wave ontenna and 65 ohm line . . . , , . ,
——-—-—— Holf-wave antenna and 65ohm line 085 090 095 10 105 LIO LIS
with 65 ohm compensating stub

—————— Half-wave antenna and 120 ohm line
with 65 ohm compensating stub

°
Relative frequency

(a) (b)
Frc. 14-45. Normalized impedance (@) and SWR (b) for cylindrical i-wavelength
dipole {L/D = 60) fed directly with 65-ohm line as in Fig. 14-42a (solid curves); with
65-ohm line and 65-ohm -wavelength compensating stub as in Fig 14-42f (dash-dot
curves); and with a 120-ohm line and 65-ohm }-wavelength compensating stub (dashed
curves).

tances in parallel are additive so this tends to reduce the total susceptance
at the antenna terminals, and, therefore, the SWR on the line. At a
frequency slightly below F, the result is similar, but in this case the stub
is inductive and the antenna has capacitative reactance.

The above matching arrangements provide for a perfect impedance

1The antenna impedance at this frequency has a positive reactance. Hence,

1.1 __e_j
Z RA4X J
where G is the conductance component and B the susceptance component of the ad-

mittance Y.
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match (SWR = 1) at the resonant frequency of the antenna. Sometimes
a perfect impedance match is not required at any frequency, and it is
sufficient to make the SWR less than a certain value over as wide a fre-
quency band as possible. For example, the SWR for the f-wavelength di-
pole (L/D = 60) may be made less than 2 over nearly the entire frequency
band under consideration if the antenna with 65-ohm compensating stub
is fed with a 120-ohm line instead of a 65-ohm line. The impedance and
SWR. curves for this case are shown by the dashed lines in Figs. 14-45a
and b.

Although the above discussion deals specifically with matching arrange-
ments between a i-wavelength dipole and a two-conductor transmission

/Balonced dipole antenna

¥
l ra j Balonced dipole antenna
T /
i [ s ]
L T
Cylindrical
sleeve L
Metal strap
Cooxial Caaxial
oaxia line —>
line (a) (b

F1g. 14-46. Methods of feeding a balanced antenna with a single coaxial line,

line, the principles are general and can be applied to other types of an-
tennas and to coaxial lines.

Antenna impedance characteristics may also be compensated by series
reactances or by combinations of series and parallel reactances.' Many
of the techniques of impedance compensation are discussed with examples
by J. A. Nelson and G. Stavis.”

It is often convenient to use a single coaxial cable to feed a balanced
antenna. This may be accomplished with the aid of a balance-to-unbalance
transformer or balun.®> One type of balun suitable for operation over a

'F. D. Bennett, P. D. Coleman, and A. S. Meier, The Design of Broadband Aircraft-
antenna Systems, Proc. I.R.E., 33, 671-700, October, 1945.

H. J. Rowland, The Series Reactance in Coaxial Lines, Proc. I.R.E., 86, 65-69,
January, 1948,

J. R. Whinnery, H. W. Jamieson, and T. E. Robbins, Coaxial-line Discontinuities,
Proc. I.R.E., 32, 695-709, November, 1944.

*Chap. 3, “Very High Frequency Techniques,” Radio Research Laboratory Staff,
MeGraw-Hill Book Company, Inc., New York, 1947, pp. 53-92.
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wide frequency band is illustrated in Fig. 14-32c. Another more compact
type is shown in Fig. 14-46a. The gap spacing at the center of the dipole
is made small to minimize unbalance. The length L may be about %
wavelength at the center frequency with operation over a frequency range
of 2 to 1 or more. With this arrangement a reactive impedance Z = jZ,
tan BL appears in parallel with the antenna impedance at the gap, Z,
being the characteristic impedance of the two-conductor line of length L.
Yet another form of balun is shown in Fig. 14-46b. This form provides a
balanced transformation only when L is  wavelength and, accordingly, is
suitable only for operation over a few per cent band width.

PROBLEMS

14-1, a. Design a plano-convex dielectric lens for 5,000 Mc with a diameter of
10 wavelengths. The lens material is to be paraffin, and the F number
is to be unity. Draw the lens cross section.

b. What type of primary antenna pattern is required to produce a uniform
aperture distribution?

14-2. Design an artificial dielectric with a dielectric constant of 1.4 for use at

3,000 Mc when the artificial dielectric consists of

a. copper spheres

b. copper discs

¢. copper strips

14-3. Design an unzoned plano-concave E-plane type of metal-plate lens of the

unconstrained type with an aperture 20 wavelengths square for use with a 3,000-Mc
line source 20 wavelengths long. The source is to be 20 wavelengths from the lens
(f/1lens). Make the index of refraction 0.6.

a. What should the spacing between the plates be?

b. Draw the shape of the lens, and give dimensions.

c. What is the band width of the lens if the maximum tolerable path

difference is § wavelength?
14-4. Give the answers to parts b and ¢ of Prob. 3 if the lens is a zoned type.
14-5. Design a maximum E type rhombic antenna for an elevation angle

o= 17.5°
14-8. Design an alignment type rhombic antenna for an elevation angle
o = 17.5°

14-7. Design a compromise type of rhombic antenna for an elevation angle
a = 17.5° but at a height above ground of 0.5 wavelength.

14-8. Design a compromise type of rhombic antenna for an elevation angle
a = 17.5° but with a leg length of 3 wavelengths.

14-9. Design a compromise type of rhombic antenna for an elevation angle
a = 17.5° but at a height above ground of 0.5 wavelength and a leg length of 3
wavelengths.

14-10. Calculate the relative vertical plane patterns in the axial direction for the

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



LENS AND LONG WIRE ANTENNAS 443

rhombics of Probs. 5, 6, 7, 8, and 9. Compare the patterns with the main lobes
adjusted to the same maximum value.

14-11. Derive (14-55) for the relative field intensity of a horizontal rhombie
antenna above a perfectly conducting ground.

14-12, Verify (14-57), (14-61), and (14-62) for the alignment design rhombic
antenna.

14-13. Calculate the SWR on a 65-ohm line connected to the L/D = 60 dipole
of Sec. 14-24 over a 30 per cent band width if an open-ended line of 40 ohms charac-
teristic impedance is connected in parallel with the antenna terminals. The line
is 180° long at the center frequency F.

14-14. Prove (14-15b).

14-15. a. What is the terminal impedance of a ground plane mounted stub
antenna fed with a 50-ohm air-filled coaxial line if the SWR on the
line is 2.5 and the first voltage minimum is 0.17 wavelength from the
terminals?

b. Design a transformer so that the SWR = 1,

14-16. Calculate and plot the far-field pattern in the plane of a loop antenna
consisting of four 4-wavelength center-fed dipoles with sinusoidal current distribu-
tion arranged to form a square 4 wavelength on a side. The dipoles are all in phase
around the square.

14-17. Calculate and plot the far-field pattern in the plane of a loop antenna con-
sisting of three 4-wavelength center-fed dipoles with sinusoidal current distribution
arranged to form a triangle 3 wavelengtli on a side. The dipoles are all in phase
around the triangle,
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CHAPTER 15

ANTENNA MEASUREMENTS

156-1. Introduction. Most of the discussion in the preceding chapters
deals with methods of analyzing and calculating antenna characteristics.
In this chapter methods and techniques are discussed for experimental
measurements on antennas. There are sections on the measurement of
pattern, gain, current distribution, impedance and polarization. The dis-
cussion on polarization occupies several sections and includes an analysis
of elliptically polarized waves. According to the reciprocity relation, the
same pattern will be measured whether the antenna is transmitting or
receiving. The same is true of certain other characteristics, so that it will be
convenient in some cases to regard the antenna as a radiator and in other
cases as a receiver.

15-2. Patterns. The far- or radiation-field pattern of an antenna is one
of its most important characteristics. The field pattern is actually a three-

z
Polar or vertical axis

6=0"

Meridian of constant
longitude

Circle of constant
tatitude or polar anyle

0-00
V
P=90° Y
Antenna f=0°
¢
Azimuth or longitude
angle
Equator
%90
% =9

Fia. 15-1. Antenna and coordinates for pattern measurements.
444
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Sec, 15-2] ANTENNA MEASUREMENTS 445

dimensional or space pattern, and its complete description requires field
intensity measurements in all directions in space.

A space pattern may be measured according to the following procedure.
Let the antenna under test be situated at the origin with the z-y plane
horizontal and the z axis vertical as in Fig. 15-1. Then on an imaginary
sphere of large radius with the origin at the center, patterns of the 8 and
¢ components of the electric field (¥, and E,) are measured along latitude
circles (that is, circles of constant latitude or polar angle, ). These
patterns are measured as a function of the longitude or azimuth angle ¢.!
Measuring such patterns at 10° intervals in latitude from 8 = 0° to
6 = 180° requires a total of 36 patterns, 18 for E,, and 18 for E,. At the
poles the measurements reduce to polarization patterns at a point. For
more detail, smaller increments are taken in the angle 8. It also may

Antenna
e

AN

S~ Polarization ellipses

Fra. 15-2. Polarization ellipses on distant sphere.

be desirable to measure patterns for the field components at angles be-
tween the ¢ and 6 directions. In fact, if the field from the antenna is, in
general, elliptically polarized, it may be useful to measure polarization
patterns for different directions and then to draw the corresponding polari-
zation ellipses on a sphere as in Fig. 15-2. The subject of elliptically
polarized waves and their measurement is discussed in more detail in a
later section.

'The angle ¢ is the longitude angle of an imaginary sphere with the antenna at its
center, It is also the azimuth angle since the z-y plane is taken to be horizontal.
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Although comprehensive pattern surveys such as outlined above are
sometimes necessary, it is frequently possible to obtain sufficient informa-
tion with only a few patterns. For example, suppose that the antenna is
a horizontally polarized type with its major lobe of radiation in the x
direction as shown in Fig. 15-3a. In this figure the z-y plane is horizontal.

Z
Q:e'¢=0, 4=0°
A2 Horizontaily
re N
& =-90° 1/ polorized antenna =-080° Ve{;'““&'o tenna
9=00° %=90° polarized anfen
(g:gg:Y ¢ =90""
@ @ 6 =90°
Eg(§=90°%¢)
X ¢ Eg{0=90°9)
—0' x
8=90° ¢ =0°
- 8 =90°
§=180° (a) 8=180° (0)

Frg. 15-3. Vertical and horizontal plane patterns for horizontally polarized antenna (a)
and vertically polarized antenna (b).

Then two patterns may be sufficient. In one, the ¢ component of the
electric field (horizontal) is measured as a function of ¢ in the z-y plane
(6 = 90°). This pattern is the so-called E-plane pattern and may be
designated E,(8 = 90° ¢) as indicated in Fig. 15-3a. In the other pattern
the ¢ component of the field is measured as a function of @ in the x-z plane
(plane of meridian for ¢ = 0°). This is the so-called H-plane pattern and
may be designated £,(6, ¢ = 0°). Since these patterns bisect the major
lobe of radiation in two mutually perpendicular planes, they may provide
sufficient information for many applications.

If the antenna is a vertically polarized type with its major lobe of
radiation in the x direction, the patterns are measured as a function of ¢
and 6 in the same planes as for the horizontally polarized antenna execept
that measurements are made of the 6 component of the field. Thus, the
patterns measured are the E;(0 = 90° ¢) and the E4(6, ¢ = 0°) patterns
as suggested in Fig. 15-30.

Although the dominant radiation from an antenna may be horizontally
polarized, some of the minor lobes may be vertically polarized. To observe
such cross-polarization in both the vertical (z-z) plane and horizontal
(z-y) planes requires the measurement of all four patterns mentioned
above. To summarize, these are:
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E (6 = 90° ¢) = pattern of ¢ component of electric field as a function
of ¢ in z-y plane (§ = 90°)
pattern of ¢ component as a function of 4 in z-z plane

I

E¢(0, ¢ = 00)

¢ =09
E,(8 = 90° ¢) = pattern of # component as a function of ¢ in z-y plane
(6 = 90°)

E,(8, ¢ = 0°) = pattern of 8 component as a function of ¢ in the z-z
plane (¢ = 0°)

In the case of a circularly or elliptically polarized antenna, the measure-
ments might consist of these four patterns or, for measurements in only
one plane, of two patterns, one for each field component (E, and Ej).

Field patterns are commonly plotted in terms of relative or absolute
field intensity. They may also be conveniently presented as a decibel
ratio with the maximum field intensity as the zero or reference level. This
type of presentation is particularly valuable with high-gain antennas when
accurate information as to the level of minor lobes is needed. See, for
example, Fig. 14-16.

15-3. Pattern Measurement Arrangements. In pattern measurements
it is usually convenient to operate the antenna under test as a receiver,
placing it under suitable illumination by a transmitting antenna as illus-
trated in Fig. 15-4. The transmitting antenna is fixed in position, and the

Transmitting Antenna
antenna under test
Antenna
support shaft
¢
Antenna
Tronsmitter rototor
or mechanism
oscillator
Receiver
Indicator

Fi1a. 15-4. Antenna pattern measuring arrangement.

antenna under test is rotated on a vertical axis by the antenna support
shaft. Assuming that both antennas are linearly polarized, the
E,(6 = 90°, ¢) pattern is measured by rotating the antenna support shaft
with both antennas horizontal as in Fig. 15-4. To measure the E,(6, ¢ = 0)
pattern, the antenna support shaft is rotated with both antennas vertical.

Indication may be on a direct reading meter calibrated in field intensity,
or the meter may always be adjusted to a constant value by means of a
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calibrated attenuator. Where large numbers of patterns are taken, work
is facilitated by an automatic pattern recorder such as shown in Fig. 15-5.

15-3a. Distance Requirement. For an accurate far-field or Fraunhofer
pattern of an antenna a first requirement is that the measurements be
made at a sufficiently large distance.' Suppose that the antenna to be

e e

F1a. 15-5. Automatic antenna pattern recorder. The pattern is drawn by a pen on
polar coordinate paper. Control equipment is at the right. (Antenna Laboratory, The
Ohio State University.)

measured is a broadside array consisting of a number of in-phase linear
elcments as suggested in Fig. 15-6. The width or physical aperture of the
array is @. At an infinite distance normal to the center of the array, the
fields from all parts of the aperture will arrive in the same phase. How-

TN
a . P
l :*Broadside

array

Fia. 15-6. Geometrical relations for distance requirement.

1Tf the distance is insufficient, the ncar ficld or Fresnel pattern is measured. In gen-
eral, this pattern is a function of the distance at which it is measured.
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ever, at any finite distance r, as in Fig. 15-6, the field from the edge of the
array must travel a distance r + & and, hence, is retarded in phase by
(360°/1) 8 with respect to the field from the center of the array. If 8 is
a large enough fraction of a wavelength, the measured pattern will depart
appreciably from the true far-field pattern. Referring to Fig. 15-6,

2
s+ 8 =1+ % (15-1)
IfsKaand d KLr
2
a
roe oy (15-2)
Thus, the minimum distance » depends on the maximum value of & which
can be tolerated. Some workers' recommend that § be equal to or less
than A/16. Then

2
r>2 5‘)% (15-3)

In general the constant factor [equal to 2 in (15-3)] may be represented
by k. Thus,

lal\'l

r>k (15-4)

[, T

The phase difference for § = A/16 is 22.5° since

o

A

Phase difference = 3

In some special cases phase differences of more than 22.5° can be tolerated
and in other cases less. The table on p. 450 gives the constant factor
k [Eq. (15-4)] for three values of tolerable phase difference equal to 10°,
22.5°, and 30°.

According to (15-4) the minimum distance of measurement is a function
of both the antenna aperture a and the wavelength . In the case of
antennas of large physical aperture and small wavelength, large distances
may be required. For example, consider a 30,000-Mc broadside beam
antenna with a physical aperture of 1 meter. Taking & = 2, we obtain
for the minimum distance » = 200 meters.

15-3b. Requirement of Uniform Field. A second requirement for an
accurate field pattern is that the transmitting antenna produce as nearly

1C. C. Cutler, A. P. King, and W. E. Kock, Microwave Antenna Measurements,
Proc. I.R.E., 36, 1462-1471, December, 1947.
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Maxiium tolerable
. 8 k*
phase difference
A
Q —_
10 36 4.5
A
(o] —_
22.5 16 2
A
[o] —_
30 12 1.5

*To reduce the interaction of microwave antennas under test, it is recommended that
k have a value at least equal to 2. See Chap. 15 by H. Krutter, “Microwave Antenna
Theory and Design,” edited by 8. Silver, McGraw-Hill Book Company, Inc., New
York, 1949, p. 592.

as possible a plane wave of uniform amplitude and phase over a region at
least as great as that occupied by the antenna under test. Variations or
gradients in the field could be caused by interference of the direct wave

Transmitting Test
antenna Direct location

-
wave

Antenna
under test

Reflected

Ground
7 7. 7

Frc. 15-7. Interference of direct and reflected waves may produce undesirable varia-
tions in the field at the test location.

with waves reflected from the ground as in Fig. 15-7 or from other objects.
Reflections from walls or buildings can be avoided by selecting an open
field or a flat roof as the measuring site. °

The effect of the ground reflection may be minimized by using a di-
rectional transmitting antenna and placing both antennas on towers as
in Fig. 15-8a or near the edges of adjacent buildings as in Fig. 15-8b. With
such arrangements the amplitude of the reflected wave is reduced since
the groundward radiation from the transmitting antenna is reduced and
also since the path length of the reflected wave is appreciably greater than
the path length of the direct wave. In a typical case the variation of the
field intensity as a function of the height at the test location may be as
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indicated by the solid curve in Fig. 15-9. The transmitting antenna is
directional and is at a fixed height k. There is a considerable region near
the height & with a relatively uniform field. If the transmitting antenna

Transmitting Ar&tenno
antennu under test :
_é L.
0o
0
Tower
Building o

(%)

FIG. 15-8. Antenna test setups.

were nondirectional in the vertical plane, a much greater field variation
would result at the test location as indicated by the dashed curve in Fig.
15-9.

Sometimes the distance requirement of (15-4) is so large that the re-
quired tower height may be impractical. In this case the test antenna

Transmitting

onten@
/

4

Height

A Ground

Relative field
ir%ensity
at test location

Fia. 15-9. Variation of field intensity with height at the test location with trans-
mitting antenna relatively close.

can be situated in a region of maximum field intensity such as at the
height h, or h, in Fig. 15-10. This arrangement has the limitation that
the height of the test antenna must be adjusted for each change in fre-
quency. This may be a considerable inconvenience when testing very
wide-band antennas.

Other causes of a nonuniform field at the test location are an improperly
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directed transmitting antenna or one with too narrow a beam. In making
pattern measurements, it is good practice to explore the entire volume to
be occupied by the test antenna with a 3-wavelength antenna at each
frequency of operation while observing the received field intensity. A

Test location

Transmitting
ontenna

<D }
Ground -ﬁ ¢

Relative field
intensity—>

Fra. 15-10. Variations of field intensity with height at test location with transmitting
antenna at large distance.

variation of § db is sometimes taken as the maximum tolerable field varia-
tion.!

15-4. Phase Measurements. The preceding sections on pattern meas-
urements deal only with the magnitude of the field intensity. To measure
the phase variation of the field, an arrangement such as shown in Fig. 15-11

Transmittin Probe
antenno 9 rpofh
\
|
|
Prt'::be
| /on enna
/‘\
/
/
A
- Calibrated Receiver
Attenuator line stretcher

or phase shifter
Transmitter Indicator

Fie. 15-11. Setup for phase measurements.

18ee C. C. Cutler, A. P. King, and W. E. Kock, Microwave Antenna Measurements,
Proc. 1.R.E., 36, 1462-1471, December, 1947. This reference also discusses the use of
fences to reduce ground reflection effects. See also Chaps. 2 and 10, “Very High Fre-
quency Techniques,” Radio Rescarch Laboratory Staff, McGraw-Hill Book Company,
Ine., New York, 1947.
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can be used. The antenna under test is operated as a transmitting antenna.
The output of a receiving antenna is combined with the signal conveyed
by cable from the oscillator. The receiving antenna is then moved so as
to maintain either a minimum or a maximum indication. The path traced
out in this way is a line of constant phase. This method was mentioned
earlier in Chap. 2.
In another type of measurement the receiving antenna is moved along
a reference line. A calibrated line stretcher or phase shifter is then adjusted
to maintain & maximum or minimum indication. The measured phase
shift can then be plotted as a function of position along the reference line.!
16-b6. Directivity. The directivity of an antenna can be determined from
the measured field pattern. Thus, as defined in Chap. 2, the directivity
of an antenna is
47

D =70 ¢ snsdsde

(15-5)

where f(8, ¢) = relative radiation intensity (power per square radian) as

a function of the space angles 6 and ¢ (see Fig. 15-1)
Since the radiation intensity is proportional to the square of the field
intensity, the directivity expression (15-5) can be written as

D= 4
T ff F¥0, ¢) sin 6 d6 do

(15-6)

where F(6, ) = relative field pattern, that is, the relative total field in-
tensity as a function of 6 and ¢ (see Appendix, Sec. 20).
The directivity is determined by the shape of the field pattern by graph-
ical integration and is independent of antenna loss or mismatch.
16-8. Gain. The gain of an antenna over an isotropic source is defined
in Chap. 3 as
Go = aD (15-7)

where G, = gain with respect to an isotropie source (G without a subscript
indicates the gain with reference to some antenna other than
an isotropic source)
D = directivity
a = effectiveness ratio (0 < a < 1)

1C. C. Cutler, A. P. King, and W. E. Kock, Microwave Antenna Measurements,
Proc. I.R.E., 3b, 1462-1471, December, 1947.

Chap. 15 by H. Krutter, ‘“Microwave Antenna Theory and Design,” edited by S.
Silver, McGraw-Hill Book Company, Inc., New York, 1949, p. 543.

Harley Iams, Phase Plotter for Centimeter Waves, RCA Rev., 8, 270-275, June, 1947
Pescribes automatic device for plotting phase fronts near antennas.
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The constant « takes into account the radiating efficiency of the antenna
and the effects of any mismateh. If matching 1s proper, « is equal ta
the radiating efficiency & of the antenna. Since the radiating efficiency
of many very high-frequency antennas is high (nearly 100 per cent or
£t ~ 1), we have @ = k=~ 1, and the measured gain closely approximates the
directivity D calculated by the method of Sec. 15-5. The gain of an actual
antenna is always less than the directivity. Assuming perfect matching,
any difference between the gain and directivity can be attributed to
antenna losses.

15-6a. Gain by Comparison. Gain is always measured with respect to
some reference antenna. Since an isotropic source is a hypothetical
standard, it is common practice to make actual gain measurements with
respect to a 3-wavelength reference antenna. The gain @ is then

W, V,\
-5 - (7) (15-8)

where W, = power received with antenna under test

W. = power received with %-wavelength reference antenna

¥, = voltage received with antenna under test

Vs voltage received with }-wavelength reference antenna
It is assumed that both antennas are properly matched. Making the
additional assumption that the i-wavelength antenna is lossless, the gain
G, over a lossless isotropic source is

I

G, = 1.64G (15-9)

The comparison should be made with both antennas in a suitable loca-
tion where the wave from a distant source is substantially plane and of
constant amplitude. The requirements of Secs. 15-3¢ and 15-3b should be

fulfilled.
Transmitting Antenna under
antenna { test
—_—
R Plane tndicator
Calibrated
attenuator —>
wave Receiver
—_
“Half-wave
QOsciflator reference

ontenna
F1a. 15-12. Gain measurement by comparison.

Both antennas may be mounted side by side as in Fig. 15-12 and the

comparison made by switching the receiver from one antenna to the other.
The ratio V./V, is observed on an output indicator calibrated in relative
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voltage. An alternative method is to adjust the power radiated by the
transmitting antenna with a calibrated attenuator so that the received
indication is the same for both antennas. The ratio W,/W, is then
obtained from the attenuator settings.

Mounting both antennas side by side as in Fig. 15-12 but in too close
proximity may vitiate the measurements because of coupling between the
antennas. To avoid such coupling, a direct substitution may be made
with the idle antenna removed to some distance. If the antennas are of
unequal gain, it is more important that the high-gain antenna be thus
removed.

If the gain of the antenna under test is large, it is often more con-
venient to use a reference antenna of higher gain than that of a i-wave-
length element. At microwave frequencies electromagnetic horns are fre-
quently employed for this purpose.’

Short-wave directional antenna arrays, such as used in transoceanic com-
munication, are situated at a fixed height above the ground. The gain of
such antennas is customarily referred to either a vertical or a horizontal
i-wavelength antenna placed at a height equal to the average height of the
array. This gain comparison is at the elevation angle a of the downcoming
wave. If the directional antenna is a high-gain type and any mutual
coupling exists between it and the 3-wavelength antenna, the directional
antenna can be rendered completely inoperative by lowering it to the
ground or sectionalizing its elements when receiving with the 1-wavelength
antenna.

In the above discussion it has been assumed that the antennas are
perfeetly matched. It is not always practical to provide such matching.
This is particularly true with wide-band receiving antennas that are only
approximately matched to the transmission line. In general, another mis-
match may occur between the transmission line and the receiver. In such
cases the measured gain is a function of the receiver input impedance and
the length of the transmission line.> To determine the range of fluctuation
of gain of such wide band antennas with a given receiver as a function of
the frequency and line length, the length of the line can be adjusted at
each frequency to a length giving maximum gain and then to a length
giving minimum gain. The average of this maximum and minimum may
be called the average gain.

15-6b. Absolute Gain of Identical Antennas. The gain can also be meas-

1Chap. 15 by H. Krutter, “Microwave Antennas,” edited by 8. Silver, McGraw-Hill
Book Company, Inc., New York, 1949, p. 543.

*Chap. 10 by Kraus, Clark, Barkofsky, and Stavis, “Very High Frequency Tech~
niques,” Radio Research Laboratory Staff, McGraw-Hill Bock Company, Inc., New
York, 1947, pp. 232 and 271.
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ured by a so-called absolute method' in which two identical antennas are
arranged in free space as in Fig. 15-13. One antenna acts as a transmitter

«r;_—' kl-)’wr
_—

'S 3

Transmitter Receiver

Fra. 15-13. Absolute gain measurements with two identical antennas.

and the other as a receiver. By the Friis transmission formula (Chap. 3)

W, A,A,
WS ONE (15-10)
where W, = received power
W, = transmitted power

A,, = effective aperture of receiving antenna

A, = effective aperture of transmitting antenna
A = wavelength
r = distance between antennas

The distance requirement of Sec. 15-3a should be fulfilled. If r is large
compared to the depth d of the antenna, the precise points on the antennas
between which r is measured will not be critical. Since

2

A
A, = G, oo (15-11)

where G, = gain of antenna over an isotropic source
and since it is assumed that 4,. = A.,, (15-10) becomes

W, G\
W, (40

4ar (W,
G, = ~ ‘/W, (15-13)

Thus, by measuring the ratio of the received to transmitted power, the
distance r, and the wavelength X, the gain of either antenna can be de-
termined. Although it may have been intended that the antennas be

IC. C. Cutler, A. P. King, and W. E. Kock, Microwave Antenna Measurements,
Proc. I.R.E., 85, 14621471, December, 1947; also Chap. 15 by H. Krutter, ‘“Micro-
wave Antennas,” edited by S. Silver, MeGraw-Hill Book Company, Inc., New York,
1949, p. 543.

(15-12)

and
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identical, they may actually differ in gain by an appreciable amount. The
gain measured in this case is

Go = ‘\/GmGoz (15'14)

where G, = gain of antenna 1 of the “identical”’ pair

Gy, = gain of antenna 2 of the “identical’”’ pair
both gains referred to an isotropic source. To find Gy, and Gy, the above
measurement is supplemented by a comparison of each of the antennas
with a third reference antenna whose gain need not be known. This gives
8 gain ratio between ‘‘identical”’ antennas of

F_ G
G = G, (15-15)
where G; = gain of antenna 1 over reference antenna
@, = gain of antenna 2 over reference antenna
Then since
G G
G == 15-16
G, = Gun (15-16)
we have i
Go, = Gy VG (15-17)
and
Gy, = Go (15-18)

VG

15-7. Terminal Impedance Measurements. The terminal impedance of
UHF antennas is conveniently measured by transmission-line methods.
The antenna terminals are connected to the end of a transmission line ener-
gized by a transmitter or oscillator as shown in Fig. 15-14. Measurement of
the SWR of voltage or current along the line and of the distance d between
either a current minimum or a voltage minimum and the antenna terminals
permits a determination of the terminal impedance by well known meth-
ods.! This is done simply with a Smith chart.” The impedance values

1F. E. Terman, “Radio Engineering,” 3d ed., McGraw-Hill Book Company, Inc.,
New York, 1947, pp. 94-98.

F. E. Terman, “Radio Engineers’ Handbook,” MeGraw-Hill Book Company, Inc.,
New York, 1943, pp. 172-197.

Chap. 2 by Nelson, Lazarus, Christensen, and Buss, “Very High Frequency Tech-
niques,” McGraw-Hill Book Company, Inc., New York, 1947.

Chap. 8 by J. F. Reintjes, “Principles of Radar,” by M.I.T. Radar School Staff,
McGraw-Hill Book Company, Inc., New York, 1946.

R. W. P. King, H. R. Mimno, and A. H. Wing, ‘“Transmission Lines, Antennas, and
Wave Guides,” McGraw-Hill Book Company, Inc., New York, 1945, Chap. 1.

J. C Slater, “Microwave Transmission,” McGraw-Hill Book Company, Inc., New
York, 1943, Chap. 1.

*P. H. Smith, Transmission Line Calculator, Electronics, 12, 29-31, January, 1939.
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so obtained at each frequency of measurement may be connected to
form an impedance-vs.-frequency curve. The shape of this curve on a
Smith chart is a function of the characteristic impedance of the transmis-
sion line. To avoid this dependence, it is sometimes desirable to replot the
impedance values on a simple R vs. X diagram such as Fig. 8-12 or Fig. 9-9.
On balanced antennas with two-
wire transmission lines the meas-
urement, of the SWR and of the
current minimum point are con-
veniently made with a small loop
L/T""““"‘ connected to a current indicator
— as in Fig. 15-14. The indicating
device may be a crystal rectifier
| (square law) with current meter,
e d —y] [Adicator orit may be a thermocouple meter.
The indicator can be coupled to
one wire of the line as shown. By
measuring both wires, the amount
Fic. 15-14. Balanced antenna and trans- of unbalance of the transmission
mission line for impedance measurements. line can also be measured.

On antennas fed with unbal-
anced or coaxial transmission lines the impedance measurements can be
made with a slotted coaxial line as in Fig. 15-15. Usually a voltage probe
is used to give the SWR and distance to a voltage minimum.

Measurements on balanced antennas can often be conveniently made
with a slotted coaxial line and ground-plane arrangement (Iig. 15-15) by

Transmitter

o~

Receiver
Ground . Indicator
plane~.! Slotted line
8 RE
f | . Probe filter
— _ —
(Stub Oscillator
antenna B’
Slot
@Sechon
through Double stub
BB tuner

F1g. 15-15. Stub antenna and ground (image) plane with typical coaxial line for
impedance measurcments.

measuring one-half the antenna and then multiplying the measured im-
pedance values by 2. Thus, instead of measuring a balanced 1-wavelength
dipole with a two-wire transmission line (Fig. 15-14), measurements are
made of one-half the dipole as a -wavelength stub antenna with a large
ground plane (Fig. 15-15), Ideally the ground plane should be perfectly
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conducting and infinite in extent to produce a perfect image of the stub
antenna. The ground plane of finite extent used in practice should, there-
fore, be as large as possible. Even though the ground plane is several
wavelengths in diameter, the measured impedance of a stub antenna varies
appreciably as a function of the diameter.'" This variation is reduced as
the ground-plane diameter is increased. Meier and Summers' found that
a large square ground plane results in about half the variation of impe-
dance observed with a circular ground plane of approximately the same
size. The antennas were mounted symmetrically on both ground planes.
The reduced variation with the square ground plane is presumably due to
the partial cancellation of waves reflected to the antenna terminals from
the edge of the ground plane. These waves travel different distances on
a square ground plane, and, hence, all cannot arrive in the same phase.
The ratio of the longest to the shortest distance is the ratio of the diagonal
of a square to the length of one side (1.41). With a circular ground plane
and symmetrically located antenna, all the waves reflected from the edge
return in the same phase.

The ground (image) plane technique can also be used to advantage in
measuring the terminal impedance of slot antennas. A sheet with a half
slot (equal in length to the full slot but of one-half the width) is butted
against an image plane placed perpendicular to the slot plane. The half
slot is energized by a coaxial line with the inner conductor connected to the
terminal of the slot and the outer conductor terminated in the image plane.
The terminal impedance of the full slot is twice the impedance of the half
slot. The impedance Z,,, of the half slot is related to the impedance Z,,,
of the complementary stub antenna or § dipole by Z,,. = 8,869/Z,,,.

With horn or slot antennas that are fed with a wave guide, measure-
ments of the field in the guide can be made with a slotted wave guide and
probe arrangement. In this way measurements of the SWR, reflection co-
efficient, and equivalent load impedance may be obtained in a manner
analogous to that used with a coaxial line.?

15-8. Radiation Resistance by Reflection Method. The method of
Sec. 15-7 requires that the antenna terminals be available for the connec-
tion of a transmission line. In the case of a short-circuited resonant
element (such as a parasitic element), however, no terminals are available.
To measure the relative radiation resistance of such an element, a re-
flection method® can be employed. Consider that the antenna is a 3-

1 A. 8. Meier and W. P. Summers, Mcasured Impedance of Vertical Antennas Over
Finite Ground Planes, Proc. I.R.E., 37, 609-616, June, 1949.

*Bee, for example ‘“Very High Frequency Techniques,” Radio Research Laboratory
Staff, McGraw-Hill Book Company, Inc., New York, 1947, pp. 39—46.

3 Edwin Istvanffy, Antenna Impedance Measurement by Reflection Meathod, Proc.
I.R.E., 87, 604-608, June, 1949.
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wavelength element that has been adjusted in length to resonance. As
shown in Fig. 15-16, the antenna is placed in the field of a transmitting

Antenna Receiver
/ under test

n > ‘ Indicator
~—

Transmitter
Fra. 15-16. Reflection method for comparison of resistances.

antenna and the reflected power that is received by another antenna is
measured. The power the antenna under test reradiates is

2
W, = g e (15-19)
1
where E, = field of transmitting antenna at antenna under test (test an-

tenna 1)
l,, = effective length of resonant test antenna 1
R, = radiation resistance of resonant test antenna 1
k = constant involving the distance between antennas
For another resonant i-wavelength element (test antenna 2) of different
thickness and, hence, different effective length ., but of substantially the
same pattern, the reflected power is

2
W, = f Flea). (15-20)

where R, is the radiation resistance of the resonant test antenna 2 and %
is the samz constant as in (15-19). Then dividing (15-19) by (15-20)

B, _ W, <&>2
R =W, \l, (15-21)
Assuming that for small changes in length the effective length is pro-
portional to the physical length,

L1

L= z_: (15-22)
where [, = physical length of test antenna 1
l, = physical length of test antenna 2
Thus,
R W, {1,\*
7= ) a5

The ratio W,/W, can be conveniently measurea as the ratio (V,/V,)*
where ¥V, is the voltage received when test antenna 1 is observed and V,
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is the voltage received when test antenna 2 is observed. Thus, from the
ratio W,/W, or (V,/V,)? and the length ratio (I,/1,), the relative radiation
resistance of one resonant antenna with respect to another can be evaluated.
To determine the absolute value of the resistance requires that the re-
sistance of one of the antennas be known.

16-9. Current-distribution Measurements. In many cases it is impor-
tant to know the current distribution along an antenna. For example, if
both the magnitude and phase of the current is known at all points along
an antenna, the far field of the antenna can be calculated.

The measurement of current distributions is based on a current sampling
method. A small pickup loop is placed close to the antenna conductor.
A current is induced in the loop proportional to the adjacent antenna
current. If the wavelength is sufficiently long, the loop and indicating
meter can be combined in a single unit as in Fig. 15-17a. At very high
frequencies the indicating instrument may be too large to be placed near
the antenna without seriously disturbing the field, so that an arrangement

Q )
)

v Toreceiver

Fic. 15-17. Sampling loops for current distribution measurements.

such as illustrated in Fig. 15-17b is resorted to. Here the indicating meter
is remote from the pickup loop. The loop is connected to a crystal rectifier.
Very fine insulated output wires from the rectifier are twisted together
and then wound as a helical choke on a dielectric rod which may act as a
handle or support for the loop probe. The diameter of the choke is about
A/50 with a spacing about equal to the diameter. The choke minimizes
the current induced on the output wires by the field near the antenna.
Hence, this reduces the reaction of the probe on the antenna. A by-pass
condenser in the loop prevents a d-c short circuit on the crystal. A current

distribution measured by a loop of the above construction is presented in
Fig. 15-18.}

1Bhupendra N. Bhargava, “A Study of Current Distribution on Long Radiators,”
master’s thesis, Department of Flectrical Engineering, The Ohio State University,
Columbus, Ohio, 1947
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Another type of sampling loop is shown in Fig. 15-17¢c. This loop is
constructed of small diameter coaxial cable.' The loop is of balanced

5 -
4 -
-
s
5
i3]
o 3
<
[=
[
2
[=
o
@ 2r
2
k]
[
@
' -
1 1 1 —
50 100 150 200
Distance along ontenno in cms. o
Cylindrical
% )/ J(:n‘?ennt:
7 L) |
Cooxial o t=2.36) EY |
line Graund plone D=2
l P A=75cms. 10
Fig. 15-18. Relative current distribution on long thick cylindrical antenna. (Afier

Bhargava.)

construction. The cable leading away from the loop is wound into a
belical choke of small diameter (about A/50 diameter).
In order to remove completely the leads between loop and indicator

Oscillotor

Matched terminotion
Slotted line ~ Attenuator
_-:__@:_:_-_:_ /Sloﬁed antenno @(Sumpling loop\

— " é

X End
}<_ —>] view
Small coaxial

line from

sampling loop [« GFound plone

Indicator

Fic. 15-19a. Slotted antenna and sampling; joop.

1¥or microwave frequencies, coaxial cable as small as 0.042 in. outside diameter is
obtiinable from Precision Tube Co., 3824 Terrace St., Philadelphia, Fa.
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from the field of the antenna, the arrangement shown in Fig. 15-19a can
be employed." In this method a narrow longitudinal slot is cut in the
hollow cylindrical antenna conductor. The loop projects through the slot.
The output cable from the loop is confined within the antenna conductor
and is brought out through the end of a grounded stub as shown.

On broadcast-station arrays the current can be monitored with a loop
in this manner as shown in Fig. 15-196. A loop is mounted permanently
in place on each tower of the array and the relative phase of the outputs
of the loops monitored in the station to ensure that the field pattern does

not shift.

The variation of current magnitude as a .
function of position on an antenna can be 4 f:;’;'::r
measured with any of the types of sampling < >

loops shown in Fig. 15-17 by moving the loop /Loop
along the antenna. If in addition it is desired D

to measure the phase variation, a comparison

must be made between the phase of the sam-

pled current and a reference current. This | Cooxial tine

may be done, for example, as indicated by bonded o leg
adding the dashed connections shown in the : of tower
schematic diagram of Fig. 15-19a. Here the <>

signal picked up by the sampling loop is )

mixed with a signal of approximately equal
amplitude extracted by a probe on a matched
slotted line. With the antenna sampling loop
fixed, the line probe is moved to give a mini-
mum indication. When the antenna sampling
loop is displaced to a new location, the line probe is moved so as to maintain
a minimum indication. The phase shift between the line-probe positions
then equals the phase shift between the two antenna sampling-loop loca-
tions. The phase shift is a linear function of distance on a line with matched
termination. Assuming the phase velocity equals that of light in free
space, the phase shift 6 along the line in degrees per unit length is given by
360°/A where X\ is the free-space wavelength of the applied signal. The
phase change between two points on the line is then the distance between
the points multiplied by 8.

The phase velocity v along the antenna is given by v = A,f where f is
the frequency and A, is the wavelength measured along the antenna.

Fi1g. 15-19b. Current samp-
ling loop on broadecast-station
tower.

1Milton Aronoff, “Measured Phase Velocity and Current Distribution Characteristics
of Helical Beam Axntennes Radiating in the Beam Mode,”” master’s thesis, Department
of Electrical Engineering, The Ohio State University, 1948,

Giorgio Barzilai, Experimental Determination of the Distribution of Current and
Charge Along Cylindrical Antennas, Proc. I.R.E., 87, 825-829, July, 1949.
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This is the length for a 360° shift in phase along the antenna. This may
be determined from a phase-vs.-length curve measured as above. Or the
measurement may be simplified by measuring only the distance intervals
for a 360° phase shift. In this case the slotted matched line can be dis-
pensed with and the reference voltage fed directly to the junction J, as
indicated by the dotted line in Fig. 15-19a. The distance along the antenna
between successive minimum readings on the indicator corresponds to 1
wavelength A,. This method is suitable when the current amplitude
distribution is relatively uniform. If the SWR is very large, this method
is difficult to apply and it may be simpler to take A, as equal to twice
the distance between successive current minima, excluding the minimum
at the end of the antenna. The phase-velocity curve of Fig. 7-19 was
measured on a slotted helix using the probe arrangement of Fig. 15-19«
(without slotted line) and a combination of the above phase-velocity
methods. At low frequencies the SWR on the helix is large, and twice
the distance between successive current minima was taken for A,. At
axial mode frequencies the current amplitude is more uniform along the
helix, and A\, was measured as a 360° phase shift.

16-10. Wave Polarization. With some antennas it is of interest to
measure the nature of the polarization. This may be measured at one
frequency as a function of the space angles 6 and ¢ (see Fig. 15-2). Or it
may be measured at one angular position (8, ¢,) as a function of the fre-
quency. Such measurements are desirable where the dominant radiation
1s circularly or elliptically polarized. Before describing methods of meas-
uring the polarization (Sec. 15-17), the general subject of wave polarization
will be reviewed.

It is convenient to consider linear polarization and circular polarization
as special cases of elliptical polarization. The electric field vectors for a
linearly polarized wave' are shown in Fig. 15-20a. The magnitude and
direction of the electric field E are indicated as a function of distance for
a given instant of time. In Fig. 15-20b the wave is viewed from the di-
rection of the positive z axis (wave approaching reader). The electric
field E varies in magnitude between positive and negative %,, the direction
of E being confined to the y direction., In Fig. 15-20¢ the instantaneous
space distribution of E is presented for an elliptically polarized wave travel-
ing in the positive z direction. As viewed from the positive z axis, the
tip of the electric field vector E at a fixed position z describes an ellipse
with major and minor semiaxes E, and E; as shown in Fig. 15-20d. The
wpecial case of the linearly polarized wave of Fig. 15-20¢ and b occurs

1A linearly polarized wave is sometimes called a ‘“‘plane-polarized” wave. However,

¥plane” is used here in another sense; s0 to avoid confusion the term licesely polarized
will be emnloyed.
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when E, = 0. On the other hand, when E, = E,, the ellipse becomes a
circle and we have another special case of elliptical polarization called
circular polarization. The variation of E for a circularly polarized wave is
illustrated by Fig. 15-20e and f.

Linear polarization

Wove
direction

(a) (%)

Z

Locus of tips of
instantaneous £

Elliptical polarization

/ Wave
direction
E

(¢) (@)

Gircular polarization

Frg. 15-20. Linear, elliptical, and circular polarization.

An elliptically polarized wave may be regarded from two points of view:
(1) as the resultant of two linearly polarized waves of the same frequency
and (2) as the resultant of two circularly polarized waves of the same
frequency but having opposite rotation directions. Both points of view
will be discussed, the former being taken up first.

16-11. Elliptical Polarization as Produced by Two Linearly Polarized
Waves.! In this section an elliptically polarized wave is considered as the

* Max Born, “Optik.” Verlag Julius Springer, Berlin, 1933, p. 21.
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resultant of two linearly polarized waves of the same frequency. Assume
that both waves are traveling in the positive z direction and that the piane
of polarization® of one wave is in the

z direction and the other in the y

Ey / direction as in Fig. 15-21. If z is

€ horizontal, the wave with E in the «

direction may also be called a hori-

Direction of propagation :
—_— zontally polarized wave and the

7 wave with E in the y direction a

vertically polarized wave.
Fie. 1521, Linearly polarized compo- Let the instantaneous electric field
nents of an elliptically polarized wave. of the horizontally polarized wave be

designated E, and the instantaneous
electric field of the vertically polarized wave be designated as E,. Then
as a function of time and distance,

E, = E, sin (vt — 82) (15-24)
and
E, = E, sin (wt — Bz + &) (15-25)
where E, = amplitude of horizontally polarized wave A

E, = amplitude of vertically polarized wave
& = time-phase angle by which E, leads E, (the horizontally pola-~
rized wave is taken as the reference for phase)
The component of the field in the z direction is everywhere zero (£, = 0).
The instantaneous values of the fields may also be expressed as the
imaginary part (Im) of a complex function. Thus,

E,=ImE, = E Imé& ™ = E sin (0t — B2)  (15-26q)

and
E, = ImE, = E; Ime " = E,sin (wt — Bz + 8)  (15-26b)
where? ) _
B, = Egitt® (15-27a)
and ) .
B, = Eygtet o (15-27b)

The instantaneous value of the total field E resulting from the two linearly
polarized waves is

E = iE, sin (ot — B2) + JE, sin (ot — Bz + &) (15-28)
1The direction of the E vector (E plane) is usually taken as the direction of she “plane
of polarization” of a linearly polarized wave.
2The dot (") indicates that £, and E, are complex functions of ¢, z, and 3 but a scalar
space component of the total field vector E. In general, the instantaneous value of the
field is
E=ilmA +jImE, 4+ kImE,
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At z = 0, (15-28) reduces to
E = iE, sin wt + jE, sin (wt + 8) (15-29)

Evaluating (15-29) as a function of time ¢ and plotting the values of the
total field E, the time variation of E in the z-y plane is obtained. In
general the tip of the vector E describes a locus that is an ellipse. If
E, = E, and 6§ = 90°, the ellipse becomes a circle.

The fact that, in general, the locus is an ellipse may be shown in an-
other way by proving that (15-24) and (15-25) with z = 0 are the
parametric equations of an ellipse. Thus, we have

E, = E, sin wi (15-30)
E, = E,sin (0wt + ) (15-31)
where wf is the independent variable. The procedure used in the proof
will be to eliminate w! and rearrange the resulting expression into the
form of the equation for an ellipse. First we expand (15-31). That is,
E, = E, (sin wt cos § + cos wt sin 6) (15-32)
From (15-30)

. E, .
sin wi = z (15-33)

We also can write

e 2
coswt = /1 —sin®wt = 4J1 — <E;‘> (15-34)

Y1
Substituting (15-33) and (15-34) in (15-32) and rearranging and squaring
yields,
E! 2E.E,coss  E? . 2
B T =i (15-35)
Dividing by sin® 8, (15-35) can be reduced to
aB] — bE.E, 4 cE: =1 (15-36)
where a = 1/E?sin® §
b = 2 cos §/E.E, sin’ §
¢ = 1/E;sin’ §
Equation (15-36) may be recognized as the equation for an ellipse in its
most general form, the axes of the polarization ellipse not, in general, co-
inciding with the z and y axes (Fig. 15-22). This is the general case of

elliptical polarization. The line segment OA is the semimajor axis, and
the line segment OB is the semiminor axis of the ellipse. The ratio OA to
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OB is called the axial ratio (AR) of the polarization ellipse or simply the
azial ratio.! Thus

. . 0A
Axial ratio = OB (15-37)
Returning now to (15-35), three special cases will be considered.
Case 1. TFirst consider the case where E, is either exactly in phase
or 180° out of phase with E,. Then § = kr, where k = 0, 1, 2, 3,
and Eq. (15-35) then reduces to

E:  2E,E
Y Ly ¥ = -
7 + B, 0 (15-38)
Polarization
ellipse which may be rewritten as
Wa: E’I § —
) I T (E :tE) =0 (589)
X or
B, = +2p (1540
E,

Equation (15-40) is the equation of
a straight line of the form

E, = mE, (15-41)

Fia. 15-22. Polarization ellipse.

wherem = the slope equal to+-E,/E,
When k is even (6§ = 0, 2m, 4, etc.), the slope is positive, and when k is
odd (8 = m, 3w, 57, ete.) the slope is negative.

Thus, when the two linearly polarized component waves are exactly in
phase or 180° out of phase, the resultant wave is linearly polarized with E,
in general, not in the = or y direction. However, if E, = 0, E is in the
z direction and the resultant wave is horizontally polarized. If E, = 0,
E is in the y direction and the wave is vertically polarized. If E, = E,
and § = 0, then m = 41 and E is at a 45° angle with respect to the
positive z axis (Fig. 15-23a). If E, = E, and 6§ = 7, then m = —1 and
E is at a negative 45° angle with respect to the positive z axis (Fig. 15-23b).
The angle r (Fig. 15-23a and 23b) is related to the slope m by

T = arctan m (15-42)

1'The term ellipticily is also used synonymously with axial ratio. However, ellipticity
also may mean the ratio of the difference of the major and minor axes to the major axis.
Another term used in connection with ellipses is eccentricity. The ecceniricity of an
ellipse is the ratio of the distance between a focus and the center to the slant distance
between a focus and the end of the minor axis.
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Case 2. Next consider the situation where E, and E, are in time phase
quadrature. That is,

8= —F"n (15-43)
wherek = 0,1,2,3 ...
Then the cross-product term in (15-35) disappears and (15-35) reduces tc
E? + Eg = (15-44)

This is the standard form of the equation for an ellipse, that is, an ellipse
with its axes coincident with the coordinate axes. This is a special case

Y 8:0 Y 6=TI
% I | x " |E
i i
i I
7'—145° I
_I { X
g, X - / °
T=—45
(a) (b)
Y Y
£,
E;

(¢) (d)

Fia. 15-23. TExamples of linearly, elliptically, and circularly polarized waves.

of elliptical polarization. For example if £, = 1F, the polarization ellipse
is as shown in Fig. 15-23c.

Case 3. Finally consider Case 2 for the special condition of B, = E,.
Then (15-44) becomes

E; + E, = E} (15-45)
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This is the equation of a circle (Fig. 15-23d). Hence, when the two linearly
polarized component waves are in time phase quadrature and also are
equal in amplitude, the resultant wave is circularly polarized.

16-12. Clockwise and Counterclockwise Circular Polarization. Let us
now consider the case of circular polarization (Case 3, Sec. 15-11) in more
detail. According to (15-45) the locus of the tip of the vector E is a
circle. That is, at a fixed position on the z axis the resultant electric field
vector E is constant in magnitude and rotates uniformly with time in the
z-y plane completing one revolution each cycle. However, (15-45) gives
no information as to the direction in which E rotates, that is, clockwise
or counterclockwise. To determine the rotation direction, let us rewrite
(15-30) and (15-31) for the special case we are considering, namely,

5= %lk T and E, =FE,
where k = 0,1,2...
Then, when % is even
E, = +E, sin wt (15-46)
E, = +FE, cos wi (15-47)
and when k is odd E, is the same but
E, = —E, cos wl (15-48)

Consider first the case where k is even (6 = /2, 57/2, etc.). When
t =0,E, =0 and E, = +E, so that E is in the positive y direction.

Y Y
Y Y ()
(a) ‘ z X Z E x
E 1
X A E x
z A E '
t=0 [=% =0 [=%

Fic. 15-24. Examples of clockwise rotation of E (a) and counterclockwise rotation (b).

One-quarter of a cycle later £, = +E, and E, = 0 so that E is in the
positive z direction. Hence, at a fixed position on the z axis the resultant
electric field vector E rotates in a clockwise direction as illustrated in

Fig. 15-24a.
Next consider the case for k& odd (6 = 3n/2, 7n/2, etc.). When ¢ = 0,
£, = 0, and E, = —E, so that E is in the negative y direction. One
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quarter cycle later E, = -+E; and E, = 0 so that E is in the positive 2
direction. Hence, at a fixed position on the z axis the resultant electric
field vector E rotates in a counterclockwise direction as illustrated in
Fig. 15-24b. The wave is traveling in the positive z direction (out of page)
in both this case and the one illustrated by Fig. 15-24a. To avoid any
uncertainty as to the wave direction, we can call the first case (Fig. 15-24a)
“clockwise circular polarization wave approaching” and the second case
(Fig. 15-24b) “counterclockwise circular polarization wave approaching.”

If the electric vector appears to rotate clockwise with the wave ap-
proaching, the electric vector of the same wave appears to rotate counter-
clockwise when the wave is viewed from the opposite direction, that is,
with the wave receding from the observer. Hence, we may say that
“clockwise circular polarization wave approaching” is the same as “counter-
clockwise circular polarization wave receding.”

According to the usage of classical physics, “clockwise circular polariza-
tion wave approaching” is called “right-circular polarization.” However,
according to the IRE Standards' “clockwise circular polarization wave
receding’’ 1s called ‘‘right-circular polarization.”” Where the terms ‘“‘right-
circular” or “left-circular’” are used in the following discussion, the IRE
definition will be employed because of the convenient relation for helical
beam antennas. Thus, a right-handed helical beam antenna transmits or
receives right-circular polarization.

The two types of circular polarization and the various terms used to
describe them are summarized in Table 15-1.

TABLE 15-1

Type of helical

beam antenns for

generating or re-
ceiving polarization

Classical LR.E.
Polarization physics definition
usage (1942)

Clockwise wave approaching
or Right Left Left-handed
Counterclockwise wave receding

Counterclockwise wave approaching
or Left Right Right-handed
Clockwise wave receding

15-13. Clockwise and Counterclockwise Elliptical Polarization. In the
general situation where the resultant wave is elliptically polarized, it is

LR.E. Standards on Radio Wave Propagation (definition of terms) 1942, p. 2,
Supplement to Proc. I.E.E., 80, No. 7, Part, I1I.
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also of interest to know the direction of rotation of E. This can be de-
termined by plotting E for several instants of time as calculated from E,
and E, in (15-30) and (15-31). Or we can proceed in the following manner.
Divide (15-27b) by (15-27a) obtaining

B, _E s
5TEC (15-49)

Equation (15-49) will now be applied to several special cases as illustrations.
Case 1. When E, and E, are in phase, § = 0. Then (15-49) reduces to

B, _ L Y
p-te o L= Apl (15-50)

When E, and E, are 180° out of phase, § = #. Then (15-49) becomes

E,_ _E p B
Pl B, = B, (15-51)

Both (15-50) and (15-51) are equations of straight lines, the resultant wave
being linearly polarized. ) )

Case 2. Next consider the situation where F, leads E, by 90° or § = /2.
Then (15-49) reduces to

E, . E,
= g2 15-52
i +j Z, ( )

This is the case of clockwise elliptical polarization (wave approaching).!
The axial ratio of the polarization ellipse is in this instance E,/E,. If
the axial ratio is unity (E, = E,), then

E

= 4] 15-53

i 7 (15-53)

This is the case of clockwise circular polarization (wave approaching). It
should be noted that the ratio E,/E, equals the axial ratio only when
8 = xw/2.

Case 3. Tinally consider the situation where E, lags E, by 90° or
8 = —m/2. Then (15-49) becomes

(15-54)

1 According to the IRE definition this would be called “left-elliptical polarization.”
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This is the case of counter clockwise elliptical polarization (wave approach-
ing). When E, = E, (15-54) reduces to

L (15-55)

This is the case of counterclockwise circular polarization (wave approaching).
Thus, from Cases 2 and 3 we can conclude that a +j indicates clockwise
rotation while a —j indicates counterclockwise rotation of E (wave ap-
proaching).

15-14. Polarization as a Function of E,/E, and §. In the previous sec-
tions we have seen that the ratio K./E, (cr E,/E,) and the phase angle
determine the type of polarization of the resultant wave produced by two
linearly polarized component waves (with their planes of polarization at
right angles). The polarization ellipses for E of the resultant wave as a
function of F,/E; and § are presented in Fig. 15-25 for E,/E, values of «,

ol R T N I A

o K X , ry e 7 3 -
Y V027208 S
E La [ QA ) Ra JI i ) [, L-I
Ez Counter- Clock-
ot g n [’ =~ e r N
NNOZ U2 ON
I i N_4 <A A N TN
clockwise wise
! S} ) o2 r=z =5 - S "
o —— — —— — — — atam—

-135° -90° -45° o’ +45° 490° +135°  +180°

Fra. 15-25. Chart of polarization ellipses as a function of the ratio E;/E; and phase
angle & (wave approaching).

2, 1, 0.5, and 0 and & values of 0°, +=45° 4-90°, £135°, and +£180°. The
direction of rotation of E is indicated. It is clockwise for positive values
of & and counterclockwise for negative values of § (wave approaching).
Referring to Fig. 15-25, the resultant wave is linearly polarized and
vertical for all values of § when E,/FE, = =, that is, when E;, = 0. When
E,/E, = 0, that is, when E, = 0, the wave is linearly polarized and hori-
zontal for all values of §. The wave is also linearly polarized when § = 0
or ==180° the plane of polarization (horizontal, slant, or vertical) de-
pending on the ratio E,/E,. Circular polarization occurs only for the case
where Ey/E, = 1and 6 = £90°, When & = +90°, the rotation direction
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is clockwise (wave approaching), and when 6 = —90°, the rotation direc-
tion is counterclockwise (wave approaching). All these situations are
special limiting cases of the general situation in which the wave is ellipti-
cally polarized. In Fig. 15-25 there are 16 cases of elliptical polarization.

In Fig. 15-25 we note that for a given value of E,/E, all polarization

100
80
60
50
40

30

.20

N S0 @O

0.6
0.5

0.4
03

0.2

0.l
0.08
0.06
0.05
0.04

0.03

0.02

0.0! :
-180° ~150° -120° -90° -60° ~30° O° +30° +60° +90° +120° +i50° +180°

]
Fie. 15-26. Wave polarization chart.

ellipses are contained within a rectangle (dashed lines) of height-to-widtb
ratio equal to E,/E,. For E;/E, = Q or « the rectangle degenerates to
a line.

Two linearly polarized antennas oriented at right angles and energized
with equal voltages in phase quadrature are sometimes employed to pro-
duce circular polarization. If the voltages are unequal or the phase rela-
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tion is not 90°, the polarization becomes elliptical. By means of polariza-
tlon measurements of the radiated wave (Sec. 15-17) it is possible to
determine what adjustments should be made on the antenna to obtain
circular polarization. For example, suppose that one of the linearly
polarized antennas is vertical and the other is horizontal. Then if the
polarization is elliptical, with the major axis of the polarization ellipse
either vertical or horizontal, the phasing is 4=90° but the two antennas are
radiating unequal powers (see Fig. 15-25). If the major axis of the
polarization ellipse is at 7 = =#45° it indicates that the two antennas
are radiating the same power but the phase is.not £90°. For other
ellipses, the power division and phasing can be estimated with the aid of
Fig. 15-25.

To present wave polarization data, a chart with coordinates similar to
those in Fig. 15-25 is useful. A chart of this type is presented in Fig. 15-26.
The ordinate is the ratio E,/E,, and the abscissa is the phase angle 8.
A point on the chart defines the polarization uniquely. Thus, the point
E,/E, = 1 and § = +90° corresponds to clockwise circular polarization
(wave approaching). If the polarization of an antenna is observed to
change as a function of frequency, this variation can be plotted as a line
on the chart of Fig. 15-26. The val-
ues of E,/E, and & can also be con- boint P {(,'y,
veniently presented on the charts of Y \ oy
Fig. 15-33 discussed in Sec. 15-17. 5
15-15. Orientation of Polarization \a ,
Ellipse with Respect to Coordinates. v cos r{ T
It is often of interest to know the P°l:|r|iazpasﬁe°n } r
angle of tilt = of the major axis of the K'sin7
polarization ellipse with respect to — X
the reference axis. The angle 7 will | /Q—’ \
be called the #lt angle. It may be de- xcos7 y'sin?
termined graphically from the polar-
ization ellipse as evaluated from
(15-30) and (15-31) as a function of gy 1527, Construction for finding the
time. Or 7 can be obtained explic- angle r between the z axis and the major
itly as a function of E,, E,, and 8 in or minor axis of the polarization ellipse.
the following manner.

The reference axes are X, Y as shown in Fig. 15-27. Let a new set .of
axes X, V' also be constructed. The coordinates of any point P may then
e expressed in the new coordinates as

2’ cos T — y' sin 7 (15-56)
z’sin r + ¢’ cos T (15-57)

I

z

i

Y
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Therefore, the electric field components (E, and E,) can be expressed in
terms of new field components (E,. and E,.) as follows,
E,=E, cos 7 — E, sin (15-58)
E,=E,.sint+ E, cosr (15-59)
Now substituting (15-58) and (15-59) into (15-35) yields
E‘ (E2 cos’ 7+ — 2E,.E, sin r cos 7 -+ E}. sin® 1)

_2(os6

B (B — EX)sin 7 cos 7 + E,.E, (cos’ r — sin® 7)] ( (15-60)

+ F (E: sin® 7 + 2E,.E,. sin 7 cos 7 -+ E.. cos’ 7) = sin® §

v

Equation (15-60) is the general relation for an ellipse involving the field
components in the direction of the new coordinate axes and the angle
between the old and new r axes. If 7 is adjusted so that the new co-
ordinate axes coincide with the major and minor axes of the polarization
ellipse, as in Fig. 15-27, then the sum of the eross-product terms in (15-60)
is zero. This relation can then be solved for 7. Thus, setting the sum
of the cross-product terms equal to zero,

2B, FE,sin rcost 2E,.E,sinr7tcost

E; h E}
_ EEE%—B (cos’ 1 —sin’ 1) = 0 (15-61)
1442
Solving (15-61) for the tilt angle r yields'
2E,E, cos §
tan 21 = 5 15-62
or
1 2E.\E, cos §
T=5 arctan BT — BT (15-63)

By means of (15-63) the tilt angle = between the major or minor axis of
the polarization ellipse and the positive z axis can be calculated from a
knowledge of the phase angle § and the amplitudes E, and E, in the z
and y directions. The angle r as given by (15-63) is the angle between
the = axis and either the major or minor axis of the ellipse since (15-61)
is true whether the ellipse is as shown in Fig. 15-27 or turned through 90°
so that its major axis is in the ¥’ direction.

1 Max Born, “Optik,” Verlag Julius Springer, Berlin, 1933, p. 23.
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Consider an example. For equal in-phase component fields § = 0 and
E, = FE,, we find from (15-63) that 7 = 45°. This is the case of linear
polarization at a slant (45°) angle. From (15-63) it is also apparent that
r = +45° when E, = E, for all values of § (see Fig. 15-25, row for E,/E, =
1). As another example, take the case for § = 45° and E, = 2E,. Then
7 = —21.7°. This is the angle between the x axis and the minor axis of
the ellipse (see ellipse at 8§ = 45° and E,/E, = 2 in Fig. 15-25). The
angle to the major axis is 90° — 21.7° = 4-68.3°.

15-16. Elliptical Polarization as Produced by Two Circularly Polarized
Waves. In this section an elliptically polarized wave will be regarded from
the point of view that it is the resultant of two circularly polarized waves.
The circularly polarized waves are of the opposite rotation direction and,
in general, of unequal amplitude.

When the amplitudes are equal, the resultant wave is linearly polarized
(Fig. 15-28a). The plane of polarization depends on the phase relation

Circularly polarized

component wave Resultant
¥ ¥ wave
X X
{ (a)
Ecew = Ecw
@ (v
Eccw=2Ecw
°
(c)
Ecw=0

Fre. 15-28. Circularly polarized components of linearly, elliptically, and circularly
polarized waves.

between the two circularly polarized waves. In the example of Fig. 15-28a

the E vectors for both component waves are in the positive y direction at
the same instant. Hence. the resultant wave is vertically polarized.
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When the amplitudes are unequal, the resultant wave is elliptically
polarized. If, for example, the counterclockwise rotating wave has twice
the amplitude of the clockwise rotating wave (E.., = 2E.,). the resultant
wave is elliptically polarized as illustrated in Fig. 15-28b. Since the E
vector of both waves is in the positive y direction at the same instant,
the major axis of the polarization ellipse is vertical. The rotation direction
is counterclockwise, the same as for the larger component wave.

If one of the component waves becomes zero, we have a limiting case
and the resultant wave is equal to the other component wave (IFig. 15-28c).

The fact that the resultant of two circularly polarized waves (of opposite
rotation direction) is, in general, an elliptically polarized wave can also
be demonstrated analytically as follows.

Let the E vector of the counterclockwise rotating component wave be
expressed by

Eczw = El’-eiw‘ (15'64)
and for the clockwise component by
E., = Ee " (15-65)
The instantaneous z and ¥ components of the resultant wave are then
E. = Re (E..., + E..) (15-66)
and
Ev = Im (Eccw + E“,,) (15-67)
Therefore,
E. = E; cos wt + E, cos (wt + §) (15-68)
and
E, = E, sin wt — E, sin (vt + &) (15-69)

Equations (15-68) and (15-69) are the parametric equations of an ellipse
since by eliminating wt they can be reduced to an equation for an ellipse
of the form

gE: + pE.E, + 1B, = 1 (15-70)

where ¢, p, and r are functions of E,, E,, and &.

The electric vector of a circularly polarized wave rotates with a uniform
angular velocity. For a linearly polarized wave, E is in a fixed direction
for one half cycle and then is in the opposite direction for the next half
eycle. The situation for elliptical polarization is between these extremes.
The angular velocity of E for an elliptically polarized wave is smaller when
E is in the direction of the major axis of the polarization ellipse and larger
when it is in the direction of the minor axis. The angular velocity is such
that the rate of sweeping out the area of the polarization ellipse is constant.
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16-17. Polarization Measurements. 'Three methods by which the polar-
1zation characteristics of a wave can be measured are:

1. By measuring the polarization pattern with a linear antenna and also
observing the direction of rotation of E, This will be called the
polarization-pattern method.

2. By measuring the amplitudes (E, and E,;) of two perpendicular
linearly polarized components of the wave and the phase angle 6
between them. This will be called the linear-component method.

3. By measuring the amplitudes (¥, and E,) of the two circularly
polarized components (of opposite rotation direction) of the wave and
the phase angle 8 between them. This will be called the eircular-
component method.

15-17a. Polarization-patiern Method. In this method a rotatable linearly
polarized antenna, such as the 3-wavelength antenna in Fig. 15-29, is
connected to a receiver calibrated to read relative field intensity.' Let

Holf-wove L
antenna P°:;’J,'f§::.°"
Q Polarization
ellipse
(a)
Polarization
pattern
Receiver
Polgrization
' ellipse
é indicator (b) (linear polarization)
F1e. 15-29. Schematic arrange- Fre  15-30. Relation of polarization
ment of rotatable linearly polar- ellipse to polarization pattern for elliptical
ized antenna for measuring polar~ polarization (a) and linear polarization (b).

ization pattern.

!In practice a linearly polarized antenna of considerable directivity would be preferred
to a }-wavelength type. Precautions must also be taken that the transmission line docs
not affect the antenna polarization characteristics.
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the wave be approaching (out of page). Then as the antenna is rotated
in the plane of the page, the field intensity observed at each position is
proportional to the maximum component of E in the direction of the an-
tenna. Such measurements of the incident wave with a rotatable linearly
polarized antenna do not yield the polarization ellipse of the wave but
rather its polarization patiern (Fig. 15-30a). Thus, if the tip of the electric
vector E describes the polarization ellipse shown in Fig. 15-30a (dashed
curve), the variation measured with a linearly polarized receiving antenna
is given by the polarization pattern in Fig. 15-30a (solid line). For a given
orientation OP of the linearly polarized antenna, the response is pro-
portional to the greatest ellipse dimension measured normally to OP. As
shown in Fig. 15-30a, this is the length OP’. If the linearly polarized
antenna orientation is O, the response is proportional to the length OQ’.
For the case of linear polarization, the polarization ellipse degenerates to
a straight line and the corresponding polarization pattern is a figure of
eight as indicated in Fig. 15-30b. By graphical construction as in Fig.
15-30, the polarization ellipse can be constructed if the polarization pattern
is known or vice versa." To determine the direction of rotation of E an
auxiliary measurement is necessary. For example, the output of two
eircularly polarized antennas could be compared, one responsive to clock-
wise and the other to counterclockwise rotation. The rotation direction
of E then corresponds to the polarization of the antenna with the larger
response.

Verticolly polarized antennos

Horizontally polorized antennas

Attenuator Slotted

tine
Receiver

Receiver

Matched

Indicator Indicator hed
termination

{(a) (&)

Fra, 15-31. Schematic arrangement of linearly polarized antennas for measuring ratio
E,/E, (a) and for measuring phase angle § in linear-component method (b).

1See, for example, Chap. 6 by G. Stavis and A. Dorne, ‘“Very High Frequency
Techniques,”” Radio Rescarch Laboratory Staff, McGraw-Hill Book Co., Inc., New
York, 1947, p. 158,
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Thus, by this method the polarization ellipse can be drawn and the
rotation direction indicated (see Figs. 15-30 and 15-25). Although such a
diagram completely describes the polarization characteristics of a wave, it
is simpler to measure merely the maximum amplitude 4/2 and the mini-
mum amplitude B/2 and take the ratio of the two amplitudes which, as
indicated in Sec. 15-11, is called the axial ratio of the polarization ellipse or
simply the azial ratto (AR). The axial ratio is usually expressed so that
it is equal to or greater than unity. The axial ratio of the polarization
ellipse of Fig. 15-30aq is

A
AR = B
Thus, by specifying AR, , and the rotation direction of E the polarization
characteristics are completely described.

15-17b.  Linear-component Method.

In this method two fixed linearly po- l:litr]:zﬁon
larized antennas can be mounted at

right angles, like the two J-wavelength

antennas in Fig. 15-31a. The wave is ) b
approaching normally out of the page. Left- q Right-
By connecting the receiver first to the ::ﬂzed g
terminals of one antenna and then the
other, as in Fig. 15-31a, the ratio E,/#,

can be measured. Then, by connect- g{gx:d/ qpe
ing both antennas to a phase compara- ‘R\omry
tor, the angle § can be measured. This / joint
may be done as in Fig. 15-31b, using a Coaxiol 3-position
matched slotted line. IFrom a knowl-

edge of E,, E,, and & the polarization L

ellipse can be calculated from (15-35)

or from (15-30) and (15-31) and the (7) ndicotor

direction of rotation E determined from
(15-30) and (15-31) (see Fig. 15-25). .FIG.I }5—32. Arrangement for measur-
ing left and right circular components

The values of E./E, (or E\/E,) and & of wave and phasc angle &' between
can be plotted on the charts of Fig. them in circular component method.
15-26 or 15-33.

15-17¢. Circular-component Method. In this method two circularly pola-
rized antennas of opposite rotation direction are connected successively
to the receiver and the amplitudes E; and E, of the circularly polarized
component waves measured. The antennas can very conveniently consist
of two long helical beam antennas' one wound left-handed and the other
wound right-handed as in Fig. 15-32. The left-handed helix responds to

1J D. Kraus, The Helical Antenna, Proc. I.R.E., 37, 263-272, March, 1949,
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left-circular polarization and the right-handed helix to right-circular pola-
rization (IRE definition). The left-circular component E, of the wave is
measured with the switch to the left as in Fig. 15-32 so that the receiver
is connected to the left-handed helix. The right-circular component E
of the wave is measured with the switch thrown to the right so that the
receiver is connected to the right-handed helix. The axial ratio (AR) of
the received wave is then given by

Er + Ey

AR:ER‘_EL

(15-71)
According to (15-71) the axial ratio may have values between +1 and
+ = and between —1 and — «. For positive values of AR the wave is
right-elliptical and for negative values is left-elliptical. The tilt angle 7
of the polarization ellipse may be measured by finding the direction of
maximum E with a rotable linearly polarized antenna. Or r may be de-
termined with the helical antennas of Fig. 15-32 by rotating one helix on
its axis with both helices connected in parallel to the receiver (switch
segment up in Fig. 15-32). Assuming that the axes of the helices are in a
horizontal plane, let the helix rotation angle be ¢’ and let its reference point
(8’ = 0) be taken when the receiver output is a minimum for a horizontally

+2 Left- handed waves Right-haonded waves
4
" r=l3o* /.—-‘———\
7=|5 .
/‘ ol 4\/./5’—;% _g':';). \

P

ARNE:

-
N\_rds /] pull
%_\

.nr:$h s
58 &

A
B )

\
oL
TR

’s]-00° \ /

7=0 §=0 AR= -

»
%

720 |8=0

I~

AR=-3 AR=3
Tu-s 7=[-30° PRy
\ Fa2-27 _AHR=-4 8'=’_?°-/‘ PPy \_5'3-30'/
-2 _AR=-5 AR=5 -
=3 -2 =l [o] +l +2 +3

Fic. 15-33a. Rumsey and Tice type of wave polarization chart.
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polarized incident wave. Then for any type of polarization with the
polarization ellipse at a tilt angle 7 to the horizontal, r = §'/2. Thus, three
measurements Ep, Er, and & with the helical antennas determine the
polarization characteristics of the received wave completely.

The circular-component method using helical beam antennas is probably
the most practical of the three methods, especially for measurements over
a considerable frequency range. The accuracy depends on the circularity
of polarization of the helices. This is improved (AR nearer unity) by
making the helices long since by (7-48)

= = (15-72)

where n = the number of turns of the helix

Axial 7=45"
ratioy 8=90°

Fia. 15-33b. Rumsey and Tice type of wave polarization chart.
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Rumsey and Tice have devised the very convenient presentation for
wave-polarization data shown in Fig. 15-33a. This presentation employs
a chart similar to a bipolar impedance chart except that AR takes the
place of SWR. and the tilt angle = of the polarization ellipse takes the
place of line length. The right half of the chart is for right-handed waves
and the left half is for left-handed waves. The rectangular coordinates
P, and P, are the real and imaginary parts of a complex polarization
parameter P that is related to the linearly polarized components E, and E,
of the wave and the phase angle § between them (see Sec. 15-14) by
the equation

. E
P=Pi+iPi=jg [0 (15-73)

A circle diagram similar to a Smith chart can also be used for this type of
presentation as shown in Fig. 15-33b. Here the chart is limited to either
left- or to right-handed waves, unless some convention is adopted as, for
example, that measurements of left-handed waves be plotted as circles
and right-handed as crosses. Either of the charts in Fig. 15-33 is especially
convenient for plotting polarization data measured by the circular-com-
ponent method.

16-18. Antenna Rotation Experiments. Consider the radio -circuit
shown in Fig. 15-34a in which both the transmitting and receiving an-

Antenng

oD

o] (Fecene

{a)

__Antenna
oxis

s~ 7
Tronsmitter ’ ‘
(b)

F1c. 15-34. Arrangements for antenna rotation experiments.

Not for resale - distribute for zero cost if you wish. Original (1950) copyright has expired.



Sec. 15-19] ANTENNA MEASUREMENTS 485

tennas are linearly polarized. If either of the antennas is rotated about
its axis at a frequency f (rps), the received signal is amplitude modulated
at this frequency. The direction of rotation is immaterial.

Consider next the radio circuit shown in Fig. 15-34b in which one antenna
is circularly polarized and the other is linearly polarized. If one of the
antennas is rotated about its axis at a frequency f (rps), the received signal
is shifted to F +=f, where F is the transmitter frequency. This experiment
may also be conducted with two circularly polarized antennas of the same
type. The frequency f is added or subtracted from F depending on the
direction of antenna rotation relative to the rotation direction of E.

15-19. Model Measurements. Pattern and impedance measurements
of actual antennas are often difficult or impractical because of the large
size of the antenna system. In such cases a scale model of the antenna
system may be built to a convenient size and then measurements made on
the properties of the model." This technique is especially useful in meas-
uring patterns of antennas mounted on aircraft. Although the antenna
proper may be small, it may excite currents over much of the airplane
surface so that the entire airplane becomes part of the antenna system, and,
hence, the measurements must be made of the airplane with antenna.
Another advantage is that the patterns of antennas on aireraft in flight
(remote from the ground) can be easily simulated by the model technique
by placing the model on a suitable tower. To measure such patterns on
actual aircraft is both tedious and expensive.

Let the scale factor for the model be p. Then any length dimension L,,
on the model is related to the corresponding dimension L on the actual
antenna by

L, =

L
= 15-74
» (15-74)

Then the frequency f,. used to measure the model must be related to the
frequency flused with the actual antenna by

In=19f (15-75)

A further requirement of an accurate model for pattern and impedance
measurements is that the conductivity of the antenna metal be scaled
according to the relation

on = PO (15-76)

1George Sinclair, Theory of Models of Electromagnetic Systems, Proc. I.R.E., 36,
1364-1370, November, 1948.

G. H. Brown and Ronold King, High-frequency Models in Antenna Investigations,
Proc. I.R.E., 22, 457-480, April, 1934,
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where ¢, = conductivity of metal in model
¢ = conductivity of metal in actual antenna

However, if ¢ is large enough, the metal can be considered to be a “‘perfect
conductor” (¢ = ») and the conductivity need not be modeled. Thus,
actual antennas of copper can usually be modeled in copper. It is assumed
that ferromagnetic materials are excluded from both actual antenna and
model and that the model is measured in air. A detailed discussion of the
model problem is given by Sinclair.!

PROBLEMS

16-1. A wave traveling normally out of the page (toward reader) has two
linearly polarized components
E, = 2 coswt
E, = 3 cos (wt + 90°)
a. What is the axial ratio of the resultant wave?
b. What is the tilt angle 7 of the major axis of the polarization ellipse?
¢. Does E rotate clockwise or counterclockwise?

16-2. A wave traveling normally outward from the page (toward reader) is the
resultant of two elliptically polarized waves, one with E-vector components given by

E) = 2 coswt

6 cos <wt + g)

and the other with components given by

El

I

E) = 1 cos wt

3 cos (wt - g)

a. What is the axial ratio of the resultant wave?
b. Does E rotate clockwise or counterclockwise?

15-3. An elliptically polarized plane wave traveling normally out of the page
(toward reader) has linearly polarized components E, and E,. Given that E, =
E, = 1 volt/meter and that E, leads E, by 72°.

a. Calculate and sketch the polarization ellipse.
b. What is the axial ratio?
¢. What is the angle 7 between the major axis and the z axis?

15-4. Answer the same questions as in Prob. 3 for the case where E, leads E, by

72° as before but E, = 2 volts/meter and E, = 1 volt/meter,

i

By

1George Sinclair, Theory of Models of Electromagnetic Systems, Proc. I.R.E., 36,
1364-1370, November, 1948,
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15-B. Verify the relation (15-63) for the angle = between the x axis and the direc-
tion of a major or minor axis of the polarization ellipse by expressing (15-35) in
polar coordinates (r, 8). Thatis, let E, = E, cos # and E, = E, sin §. Then apply
the condition that dE,/d6 = 0 for a maximum or minimum value of E,.

15-6. Two circularly polarized waves intersect at the origin. One (y wave) is
traveling in the positive y direction with E rotating clockwise as observed from a
point on the positive y axis. The other (z wave) is traveling in the positive z direc-
tion with E rotating clockwise as observed from a point on the positive x axis. At
the origin, E for the y wave is in the positive z direction at the same instant that E
for the £ wave is in the negative z direction. What is the locus of the resultant
E vector at the origin?

16-7. Prove that the instantaneous Poynting vector of a plane traveling wave is a
constant when the wave is circularly polarized.

15-8. Prove that the average Poynting vector of a circularly polarized wave is
twice that of a linearly polarized wave if the maximum field intensity is the same
for both waves,
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APPENDIX

A number of useful tables, formulas, and charts are given on the fol-
lowing pages.

1. Table of Units. In this book the rafionalized mks system of units is
used." The rationalized system has the advantage that the factor 4x does
not appear in Maxwell’s equations although it does appear in certain other
relations.

In the following table the units that are commonly used in electro-
magneties are listed. In the first column the name of the dimension or
quantity is given and in the second column the common symbol for
designating it. In the third column (Deseription) the dimension is de-
seribed in terms of the fundamental dimensions (mass, length, time, and
electric charge) or other secondary dimensions. The fourth column lists
the rationalized mks unit for the dimension, and the fifth column gives
equivalent units. The last column indicates the fundamental dimensions
by means of the symbols M (mass), L (length), T' (time), and @ (electric
charge). Quotation marks are applied to several magnetic quantities, for
example, “magnetic charge” and “magnetic current,”’ to indicate that the
quantities are fictitious, i.¢., they have no physical reality. Such quantities
are convenient, however, in some theoretical analyses.

1To be more explicit, the rationalized mkse (meter-kilogram-second-coulomb) system
is employed. However, the choice of the coulomb instead of the ampere or chm as the
fourth fundamental unit does not affect the size of the units. Hence, the system will
usually be referred te simply as the rationalized mks system.
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2. Tables of Maxwell's Equations. Maxwell’s equations are summarized
in the tables. The first table gives Maxwell’s equations in differential form
and the second table in integral form. The equations are stated for the gen-
eral case, free-space case, harmonie-variation case, steady case (static fields
but with conduction currents), and static case (static fields with no cur-
rents). In the table giving the integral form, the equivalence is also
indicated between the various equations and the electric potential or emf
V, the magnetic potential or mmf U, the electric current 7, the electric
flux ¢, and the magnetic flux ¢,
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3. Formulas for Input Impedance of Terminated Transmission Line.
Formulas for the input impedance Z, appearing at a distance x from a
Inad or terminating impedance Z on a transmission line of characteristic
impedance Z, as shown in the figure are listed in the table for three-load

X |

;
Z, Z,

o

conditions: (1) any value of impedance Z, (2) Z = 0 or short-circuited
line, and (3) Z = = or open-circuited line. TFor each load condition there
are columns for two cases: (1) the general case in which attentuation is
present on the line (o £ 0), and (2) the lossless case where the line losses
are negligible (« = 0).

Load General case Lossless case
condition {x# 0) (= 0)

y g Lt ifetenBs
Z -+ Z,tanh yz =T " 2o + jZ tan Bz

Any value Z
1y vatue Ze Zy + Z tanh yzx

Zy

N
i

— Z§/Z*

Z, = Z, tanh yz

Z=0 .
Short-circuited = Z tanh az + j tan Bz Z, = jZ, tan Bz

line ® 1+ jtanh ax tan Bz

N
I

Zy coth az*

N
|

= Z, coth yz

7= o i
Open-circuited = 7, 1 + j tanh or tan Bz 7. = —jZ, cot Bz
line tanh azr 4+ j tan Bz

7, = Z, tanh az*

* When z = nx/2 wheren = 1,3,5,...
In the tabley = a 4 jB8 where a = attenuation constant and g = 2x /A,

4. Reflection and Transmission Coefficients and SWR. For a trans-
mission line of characteristic impedance Z, terminated in a load im-
pedance Z, the reflection coefficient for voltage p,, the reflection coeflicient
for current p;, the transmission coefficient for voltage or relative voltage at
the load r,, the transmission coefficient for current or relative current at
the load 7., and the SWR are given by
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py = g _T_ gz = reflection coefficient for voltage
Zy— Z . .
p; = 7.+ 2 = reflection coefficient for current
27 .. .
Rl 1 4+ p, = transmission coefficient for voltage
27,

T = % = 1 4+ p;, = transmission coefficient for current
Zo+ Z

SWR = 1+ e = 1+ | o] = standing wave ratio
1'—([)..( I—IP.'

5. Formulas for the Characteristic Impedance of Transmission Lines.
In the following table the characteristic impedance Z, of a transmission
line is given for three cases: (1) general case where losses are present,
(2) special case where losses are small, and (3) lossless case. In the table

= characteristic impedance, ohms
characteristic resistance, ohms
series impedance, ohms per meter
series resistance, ohms per meter
series inductance, henrys per meter
shunt admittance, mhos per meter
= shunt conductance, mhos per meter
= shunt capacitance, farads per meter

N
bonon

NOQOQNNIN
I

/R + jwlL
G + juC

o)
20C 2wL

General case Zy =

Small losses Zy =

1
-
+
by
TN

Lossless case*

R=0,G=0 % =

]
&

NS Q<lb7'~<<}§1

* Also holds approximately for case where losses are not zero but wL > R and wC > G.

6. Trigonometric Relations

sin (zx + y) = sinz cosy + coszsiny
cos (z + y) = cosx cos ¥y F sin zsin y
sin (z 4+ ) +sin(x — 4) = 2sinx cos ¢
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cos{x +y) +cos(x —y) = 2cosx cosy

sin(x +y) —sin{x — y) = 2 coszsiny

cos{r +y) —cos(z —y) = —2sinzsiny

sin 2¢ = 2sin x cos x

cos2r = cos’x —sinxz = 2cos’x — 1 =1 — 2gin’ z
cosx = 2cos’dz ~ 1 =1~ 2sin®ir

sin x = 2sin 32 cos ¥x

sin®x + cos® x = 1

tanz 4 tan y

tan (z +y) = 1 — tan xtan y
_ tanxz — tany

tan (z y)—l—}-tanxtany
2tan x

tan 2z = 1 —tan’ z

T = 3.1416

T = 9.8696

1rad = 57.296°

7. Hyperbolic Relations

sinh z = 5 = + + + +

cosha;=e'ze_=1+ + + +
sinh z

ta'nhx_cosh:zc

cothx:cOth 1

sinh z _ tanh z
sinh (x & jy) = sinh z cos y & j cosh zsin y
cosh (z & jy) = cosh z cos y & jsinh zsin y
cosh (jz) = L(e*’* + ¢77*) = cosz
sinh (jz) = 3("" ~ ¢ ") = jsin z { de Moivre’s theorem
e’ = cosz 4+ jsinzx
cosh z = cos jz
jsinh z = sin jz
sinh 2z L sin 2y
cosh 2x + cos 2y J Cosh 2z + cos 2y

sinh 2z Iy sin 2y
cosh 2z — cos 2y J Cosh 2z — cos 2y

tanh (x &+ jy) =

coth (x &+ jy) =
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8. Logarithmic Relations

log,e z = log

log, 2 =Inz

log, z = 0.4343 log, z = 0.4343 In z
Inz = log, x = 2.3026 log, x

e = 2.7183

9. Approximation Formulas for Small Quantities

{8 is a small quantity compared to unity)

(1+8*=12x28
1+ 8" =1=xné

VI+s=1+1%s
——::1—:_———__= —16
V1t s 2
=143
mu+®—

JA(8) = '2,. (for | 6| K 1)
where J, is Bessel function of order n

Thus, J,(8) = E)_,é
10. Series .
Binomial: (z + )" = " + nz""'y + _(__1) 2y

n(" - gl(n )x(n—s)ya + .

2 3
Taylor's: fz + ) = f@) + @Y+ /@ 5 + 7@ 5+ -
11. Solution of Quadratic Equation

If az® + bx 4+ ¢ = O then

—b+ /b — dac
2a

12, Pascal’s Triangle. The coefficients of the binomial series for
(a 4+ b)" " are conveniently presented by the rows of Pascal’s triangle. Any
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inside number in the triangle i1s equal to the sum of the adjacent numbers in
the row above.

n 1: 1

n= 2 1 1

n= 3: 1 2 1

n 4: 1 3 3 1

n= 5 1 4 6 4 1

n= 6: 1 5 10 10 5 1

n= T: 1 6 15 20 15 6 1

n = 8§: 1 7 21 35 35 21 7 1
n= 9 1 8 28 56 70 56 28 8 1

n = 10: 1 9 36 84 126 126 84 36 9 1

13. Vector Identities (f and g are scalar functions; F, G, and H are
vectors)

V- (VXFH=0

V -Vf=Vf

VXVfi=0

Vif+ g9 =Vfi+ Vg
vV F+G) =V -F+V -G
VXF+G) =VXF+VXG

Vig=4g¢Vi+ Vg

V- -fG=G-(VH+ f(V-G)

V X fG=VfXG+ f(VXG)
VX (VXF =V(V-F —VF
V- FXG =G -(VXF)—F-(V XG)
F-GXH=G-HXF) =H:-(FXG)

14. Gradient, Divergence, Curl, and Laplacian in Rectangular, Cylin-
drical, and Spherical Coordinates (f is a scalar function; F is a vector
funetion)

a. Rectangular Coordinates (unit vectors are i, j, k; the vector F =
iF, + jF, + KF,)

_9f, .9f af
Vf-lax-i—lay-i—kaz
oF, | oF, | 9F,
oz T oy T oz

V-F=az
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vxp=i<%_am>+j(ap,_g&>+k

dy dz dz dx
i i k (

- |9 9 3

T lar oy oz

F, F, F,
a°f  a*f , af
2 Y I i S
V= oy’ T 5

V’F = iV?F, 4 jV*F, + kV°F,
b. Cylindrical Coordinates (unit vectors are a,, a,, a,; the vector F =

alF,+ aF, 4+ a,l,) (related to rectangular coordinatesby z = r cos 8, y =
rsin §, z = 2)

V= a,ﬂ—l— aslgg-ka,g—g
voP=126r) 4 190, oL
cn- a0 o) 1)
v2f=%§r< af>+r220f+af

¢. Spherical Coordinates (unit vectors are a,, a,, a,, the vector F :=
a.t, 4 a,Fy, + aFi,) (related to rectangular coordinates by = r sin 4
ROS ¢, ¥ = rsin 6sin ¢, 2 = r cos 6)

af 10f 1 af
V= Ta 60+a“’rsin 8 99

_ 1 0 /2 1 1 oF,
v F_rzar(rp')+ sm069(F°SIH0)+r51n0 op
, _ 1 (8 _aFg>
VXF= 2 sin 0(60 (Fy sin 6) ¢

+a°;<mw—5,~<"m)
+a¢ ( (TFo aF)
2p _ f 1 i( af) 1
vf'?w( ar)+r2sinoao 7 sin® 0 0¢°

15. Radians, Degrees, and Turns. In this book the arguments of trig
onometric functions are generally expressed in radians or degrees as is
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the usual custom. Much time and effort may often be saved, however, by
expressing the argument in turns instead of in radians or degrees. Radians,
degrees, and turns are related as follows:

27 rad = 360° = 1 turn

The symbol ” is used to designate turns in the same way that ° designates
degrees. Thus,
27 rad = 360° = 17

To take advantage of the simplification afforded by using turns, a table
of trigonometric functions of arguments expressed in decimal fractions of
a turn is needed. A table of this kind with argument increments of 0.005
of a turn (1.8°) is given in Sec. 16. For smaller increments, reference may
be made to Télke’s' table in which the argument increment is 0.001 of a
turn (0.36°).

HE
0

Ak \_/
I T
.

2
+1

e

=TT -T

o] 0.25 0.5 0.75 1.0 Turns
H L I I 1

0 - L 3 27 Rodians
| L : ! ]

o] 90 180 270 360 Degrees

To convert an argument from radians to degrees, we let
27 rad = 360°
To convert an argument from radians to turns, we let
27 rad = 17

IF. Télke, ‘‘Praktische Funktionlehre,” lithoreprint by Edwards Bros, Ine., Ann
hrbor, Mich., 1945.
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That is, the conversion from radians to turns is made by dropping the
factor 2x.*

Trigonometric quantities as a function of turns, radians, and degrees are
shown graphically in the figure.

To illustrate a case where it is an advantage to use turns, let us find the
value of

. 2
y =sin 3+ L

where L = 0.615 A
by using turns and also by using radians or degrees.

By the turn method, we find from the table below that

L\" ,
y = sin (X) = sin 0.615" = —0.6613'

By the radian or degree method, we write
y = sin (2r X 0.615)

Since tables of trigonometric functions in degrees are more common than
tables in radians, we usually convert to degrees. Thus,

y = sin (360 X 0.615) = gin 221.4°

Since tables generally do not give functions for arguments exceeding 90°,
we must convert the argument to a value less than 90°. Thus,

221.4° — 180° = 41.4°
Then, from a trigonometric table
sin 41.4° = 0.6613

However, we must note that 221.4° is in the third quadrant so that the
sine is negative and the result is

y = —0.6613

With the turn method the result is obtained in a single step, whereas
with the radian or degree method several steps are required. Each extra
step not only takes time but also increases the probability of introducing
an error.

The trigonometric function of an argument is unchanged by subtracting
or adding an integral number of turns. Thus, any argument can be con-

*In expressing an angle in turns it may be said that the angle is rationalized, that is,

the factor 2= does not appear.
1Note that (L/N\)7 is numerically equal to Ly, the length in wavelengths (L, = L/A).
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verted to a value between O and 41, as in the table, by subtracting or add-
ing the appropriate integer to the argument. For any positive number of

turns we can disregard the number to the left of the decimal in using the
table. Thus,

sin 7.6157 = sin 0.615" = —0.6613

Although in this book the arguments of trigonometric functions are
usually expressed in radians, it should be kept in mind that calculations
will often be facilitated by dividing the argument by 2r to convert it to
turns.
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16. Table of Trigonometric Functions for Decimal Fractions of a Turn

Turns Sin ‘ Cos Tan Cot

0.00 0.0000 1.0000 0.0000 ©

0.005 0.0314 0.9995 0.0314 31.8214
0.010 0.0628 0.9980 0.0629 15.8947
0.015 0.0941 0.9956 0.0945 10.5787
0.020 0.1253 0.9921 0.1263 7.9160
0.025 0.1564 0.9877 0.1584 6.3139
0.030 0.1874 0.9823 0.1908 5.2422
0.035 0.2181 0.9759 0.2235 4.4738
0.040 0.2487 0.9686 0.2568 3.8947
0.045 0.2790 0.9603 0.2905 3.4420
0.050 0.3090 0.9511 0.3249 3.0777
0.055 0.3387 0.9409 0.3600 2.7776
0.060 0.3681 0.9298 0.3959 2.5256
0.065 0.3972 0.9178 0.4327 2.3108
0.070 0.4258 0.9048 0.4706 2.1251
0.075 0.4540 0.8910 0.5095 1.9626
0.080 0.4818 0.8763 0.5498 1.8190
0.085 0.5090 0.8607 0.5914 1.6909
0.090 0.5358 0.8443 0.6346 1.5757
0.095 0.5621 0.8271 0.6796 1.4715
0.100 0.5878 (.8090 0.7266 1.3764
0.105 0.6129 0.7902 0.7757 1.2892
0.110 0.6374 0.7705 0.8273 1.2088
0.115 0.6613 0.7501 0.8816 1.1343
0.120 0.6846 0.7290 0.9391 1.0649
0.125 0.7071 0.7071 1.0000 1.0000
0.130 0.7290 0.6846 1.0649 0.9391
0.135 0.7501 0.6613 1.1343 0.8816
0.140 0.7705 0.6374 1.2088 0.8273
0.145 0.7902 0.6129 1.2892 0.7757
0.150 0.8090 0.5878 1.3764 0.7266
0.155 0.8271 0.5621 1.4715 0.6796
0.160 0.8443 0.5358 1.5757 0.6346
0.165 0.8607 0.5090 1.6909 0.5914
0.170 0.8763 0.4818 1.8190 0.5498
0.175 0.8910 0.4540 1.9626 0.5092
9.180 0.9048 0.4258 2.1251 0.4706
0.185 0.9187 0.3972 2.3108 0.4327
3,190 0.9298 0.3681 2.5258 0.3959
0.195 0.9409 0.3387 2.7776 0.3600
.200 0.9511 0.3090 3.0777 0.3249
0.205 0.9603 0.2790 3.4420 0.2905
0.210 0.9686 0.2487 3.8947 0.2568
0.215 0.9759 0.2181 4.4738 0.2235
0.220 0.9823 0.1874 5.2422 0.1908
0.225 0 0.1584

9877 0.1564 6.3139
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Turns Sin Cos Tan Cot
0.230 0.9921 0.1253 7.9160 0.1263
0.235 0.9956 0.0941 10.5787 0.0945
0.240 0.9980 0.0628 15.8947 0.0629
0.245 0.9995 0.0314 31.8214 0.0314
0.250 1.0000 0.0000 + o 0.0000
0.255 0.9995 —0.0314 —31.8214 —0.0314
0.260 0.9980 —0.0628 —15.8947 —0.0629
0.265 0.9956 —0.0941 —10.5787 —0.0945
0.270 0.9921 —0.1253 —7.9160 —0.1263
0.275 0.9877 —0.1564 ~6.3139 —0.1584
0.280 0.9823 —0.1874 ~5.2422 —0.1908
0.285 0.9759 —0.2181 —4.4738 —0.2235
0.290 0.9686 —0.2487 —3.8947 —0.2568
0.295 0.9603 —0.2790 —3.4420 —0.2905
0.300 0.9511 —0.3090 —3.0777 —0.3249
0.305 0.9409 —~0.3387 —2.7776 —0.3600
0.310 0.9298 —~0.3681 —2.5258 —0.3959
0.315 0.9178 ~0.3972 —2.3108 —0.4327
0.320 0.9048 —~0.4258 —2.1251 —0.4706
0.325 0.8910 —0.4540 —1.9626 —0.5095
0.330 0.8763 —0.4818 —1.8190 —0.5498
0.335 0.8607 ~0.5090 —1.6909 —0.5914
0.340 0.8443 —0.5358 —1.5757 —0.6346
0.345 0.8271 ~0.5621 —1.4715 —0.6796
0.350 0.8090 ~0.5878 —1.3764 —0.7266
0.355 0.7902 ~0.6129 —1.2892 —0.7757
0.360 0.7705 ~0.6374 —1.2088 —0.8273
0.365 0.7501 —0.6613 —1.1343 —0.8816
0.370 0.7290 —0.6846 —1.0649 —0.9391
0.375 0.7071 —0.7071 —1.0000 —1.0000
0.380 0.6846 —0.7290 —0.9391 —1.0649
0.385 0.6613 —0.7501 —0.8816 —1.1343
0.390 0.6374 —0.7705 —0.8273 —1.2088
0.395 0.6129 —0.7902 —0.7757 —1.2892
0.400 0.5878 —0.80%0 —0.7266 —1.3764
0.405 0.5621 —0.8271 —0.6796 —1.4715
0.410 0.5358 —0.8443 —0.6346 —1.5757
0.415 0.5090 —0.8607 —0.5914 —1.6909
0.420 0.4818 —0.8763 —0.5498 —1.8190
0.425 0.4340 —0.8910 —0.5095 —1.9626
0.430 0.4258 —0.9048 —0.4706 —2.1251
0.435 0.3972 —0.9178 —0.4327 —2.3108
0.440 0.3681 —0.9298 —0.3959 —2.5258
0.445 0.3387 —0.9409 —0.3600 —2.7776
0.450 0.3090 —0.9511 —0.3249 -3.0777
0.455 0.2790 —0.9603 —0.2905 —3.4420
0.460 0.2487 --0.9686 —0.2568 —3.8947
0.465 0.2181 —0.9759 -0.2235 —4.4738
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0.470 0.1874 —0.9823 —0.1908 —5.2422
0.475 0.1564 —0.9877 —0.1584 —6.3139
0.480 0.1253 —0.9921 —0.1263 —7.9160
0.485 0.0941 —0.9956 —0.0945 —10.5787
0.490 0.0628 —0.9980 —0.0629 —15.8947
0.495 0.0314 —0.9995 —0.0314 —31.8214
0.500 0.0000 —1.0000 0.0000 F oo

0.505 —0.0314 —0.9995 +0.0314 +31.8214
0.510 —0.0628 —0.9980 0.0629 15.8947
0.515 —0.0941 —0.9956 0.0945 10.5787
0.520 —0.1253 —0.9921 0.1263 7.9160
0.525 —0.1564 —0.9877 0.1584 6.3139
0.530 —0.1874 —0.9823 0.1908 5.2422
0.535 —0.2181 —0.9759 0.2235 4.4738
0.540 —0.2487 —0.9686 0.2568 3.8947
0.545 —0.2790 —0.9603 0.2905 3.4420
0.550 —0.3090 —0.9510 0.3249 3.0777
0.555 —0.3387 —0.9408 0.3600 2.7776
0.560 —0.3681 —0.9298 0.3959 2.5258
0.565 ~0.3972 —0.9178 0.4327 2.3108
0.570 —0.4258 —0.9048 0.4706 2.1251
0.575 —0.4540 —0.8910 0.5095 1.9626
0.580 —0.4818 —0.8763 0.5498 1.8190
0.585 —0.5090 —0.8607 0.5914 1.6909
0.590 —0.5358 —0.8443 0.6346 1.5757
0.595 —0.5621 —0.8271 0.6796 1.4715
0.600 —0.5878 —0.8090 0.7266 1.3764
0.605 —0.6129 —0.7902 0.7757 1.2892
0.610 —0.6374 —0.7705 0.8273 1.2088
0.615 —0.6613 —0.7501 0.8816 1.1343
0.620 —0.6846 —0.7290 0.9391 1.0649
0.625 —-0.7071 —0.7071 1.0000 1.0000
0.630 —0.7290 —0.6846 1.0649 0.9391
0.635 —0.7501 —0.6613 1.1343 0.8816
0.640 —0.7705 —0.6374 1.2088 0.8273
0.645 ~0.7902 —0.6129 1.2892 0.7757
0.650 —0.8090 —0.5878 1.3764 0.7266
0.655 —0.8271 —0.5621 1.4715 0.6796
0.660 —0.8443 —0.5358 1.5757 0.6346
0.665 —0.8607 —0.5090 1.6909 0.5914
0.670 —0.8763 —0.4818 1.8190 0.5498
0.675 —0.8910 —0.4540 1.9626 0.5095
0.680 —0.9048 —0.4258 2.1251 0.4706
0.685 —0.9178 —0.3972 2.3108 0.4327
0.690 —0.9298 ~0.3681 2.5258 0.3959
0.695 ~0.9409 —0.3388 2.7776 0.3600
0.700 —0.9511 —0.3090 3.0777 0.3249
0.705 —0.9603 —0.2790 3.4420 0.2905
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0.710 —0.9686 ~0.2487 3.8047 0.2568
0.715 -0.9759 —0.2181 4.4738 0.2235
0.720 -0.9823 —0.1874 5.2422 0.1908
0.725 —0.9877 —0.1564 6.3139 0.1584
0.730 ~0.9921 —0.1253 7.9160 0.1263
0.735 —0.9956 —0.0941 10.5787 0.0945
0.740 —0.9980 —0.0628 15.8947 0.0629
0.745 —0.9995 —0.0314 31.8214 0.0314
0.750 —1.0000 0.0000 + @ 0.0000
0.755 —0.9995 0.0314 —31.8214 —-0.0314
0.760 —0.9980 0.0628 —15.8947 —-0.0629
0.765 —0.9956 0.0941 —10.5787 —0.0945
0.770 —0.9921 0.1253 —7.9160 ~0.1263
0.775 —0.9877 0.1564 —6.3139 ~0.1584
0.780 —0.9823 0.1874 —5.2422 ~0.1908
0.785 —0.9759 0.2181 —4.4738 —0.2235
0.790 —~0.9686 0.2487 ~3.8047 —0.2568
0.795 —0.9603 0.2790 ~—3.4420 ~—0.2905
0.800 —0.9510 0.3090 ~3.0777 —0.3249
0.805 —~0.9409 0.3387 —2.7776 —0.3600
0.810 —0.9298 0.3681 ~—2.5256 —0.3959
0.815 —~0.9178 0.3972 —2.3108 —0.4327
0.820 ~0.9048 0.4258 —2.1251 —0.4706
0.825 ] —0.8910 0.4540 —1.9626 —0.5095
0.830 —0.8763 0.4818 —1.8190 —0.5498
0.835 -0.8607 0.5090 —1.6909 —0.5914
0.840 ~—0.8443 0.5358 —1.5757 —0.6346
0.845 —0.8271 0.5621 —1.4717 —~0.6796
0.850 —~0.8090 0.5878 —1.3764 —0.7266
0.855 —0.7902 0.6129 —1.2892 —0.7759
0.860 —0.7705 0.6374 —1.2088 —0.8273
0.865 —0.7501 0.6613 —1.1343 —0.8816
0.870 —0.7280 0.6846 —~1.0649 —~0.9391
0.875 —0.7071 0.7071 —~1.0000 —1.0000
0.880 —0.6846 0.7290 —0.9391 —1.0649
0.885 —0.6613 0.7501 —~0.8816 —1.1343
0.890 —0.6374 0.7705 —0.8273 —1.2088
0.895 —0.6129 0.7902 —~0.7757 —1.2892
0.900 —0.5878 (.8090 —0.7266 ~1.3764
0.905 —0.5621 0.8271 —~0.6796 ~1.4715
0.910 | —0.5358 0.8443 —0.8346 —1.5757
0.915 —0.5090 0.8607 -0.5914 —1.6909
0.920 —~0.4818 0.8763 ~0.5498 ~1.8190
0.925 —-0.4540 0.8910 -—0.5095 —1.9626
0.930 —0.4258 0.9048 —0.4706 —2.1251
0.935 —~0.3972 0.9178 ~0.4327 —2.3108
0.940 ~0.3681 0.9298 —0.3959 —2.5258
0.945 ~0.3387 0.9409 —0.3600 —-2.7776
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0.950 —0.3090 0.9511 —0.3249 -3.0777
0.955 —0.2790 0.9603 —0.2905 —3.4420
0.960 —0.2487 (0.9686 —0.2568 —3.8947
0.968 —0.2181 0.9759 —0.2235 —4,4738
0.970 —0.1874 0.9823 —0.1908 —5.2422
0.975 —0.1564 0.9877 —0.1584 —6.3139
0.980 —0.1253 0.9921 —0.1263 —7.9160
0.985 —0.0941 0.9956 —0.0945 —10.5787
0.990 —0.0628 0.9980 —0.0629 —15.8947
0.995 I —0.0314 0.9995 —0.0314 -—31.8214
1.000 0.0000 1.0000 0.0000 @

17. Universal Pattern Charts. A universal field pattern chart for linear
arrays of n isotropic point sources of equal amplitude and spacing is pre-
sented in Fig. 4-20 for n = 1, 2, 3, 4, 5, 10, and 20. The following charts
give n for all integral values from 1 through 24." The abscissa is given in
both turns and degrees. The array factor is normalized for all patterns for
which the range of ¥ includes zero.

It is sometimes advantageous to employ a graphical method with these
charts in order to be able to observe at a glance the range of  as a function
of ¢. This method may be illustrated by the following example. A linear
array consists of five isotropic point sources of equal amplitude and spacing.
The spacing d between sources is 0.25 A, and the phase difference is 6" =
—0.3. The angle between the radius vector to a distant point and the
array axis is ¢ (see Fig. 4-18). Then the value of  in turns is

y' = dycose¢ + &7
or
—¢7 =03 — 025 cos ¢

The value 87 is laid off along the abscissa of the universal pattern chart
for n = 5 and a circle of radius d, constructed as shown in the figure. For
¢ = 30° the value of d, cos ¢ is then the projection of the radius on the
abscissa as in the figure on p. 520. Continuing the projection to the n = 5
curve gives the array factor £ at ¢ = 30° as equal to 0.75. To have
sufficient space for making the graphical construction it may be most con-
venient to first trace the n = 5 curve and as much of the coordinates as
required on a sheet of tracing paper with large margins.

In extensive pattern calculations that do not employ the above graphical
method it is desirable, as in calculations of any type, to systematize the

YThese curves were furnished by J. C. Williamson.
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calculation by tabulating the work. This both facilitates the calculation
and reduces the probability of introducing an error. For example, a sample
calculation of the array factor for the above example is given below:

(D (2) (3) 4) ) (6) )
¢ cos (1) dy (3) X (2 ] (6) — (4) E
cos ¢ : lﬁT
0 1.000 0.25 0.250 0.30 —0.050 0.902
10 0.985 0.25 0.246 0.30 —0.054 0.885
20 0.940 0.25 0.235 0.30 —0.065 0.84
30 0.866 0.25 0.217 0.30 —0.083 0.75
Ete.

Column (7) is evaluated by referring to the universal pattern chart forn = 5,
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18. Sine, Cosine, and Exponential Integral Relations

Ci(z) = f T eosu du = cosine integral
. ) z z z
Ci(z) = h7$~éﬁ+m—gﬁ+
where y=¢€ = 1.781
Iny = C = 0.577 = Euler’s constant
. z z 2
Ci(x) = 0577 + Inz — om Tad "8 T
When z < 0.2, Ci(z) ~0.577 + In x
When z > 1, Ci(z) >~ ?‘—nx—x

Cin(z) = / _l_f_fgﬁl‘du
0
Cin(z) = Inyz — Ciz)
2 4
. z T z
Cin@) =25 ~2a T 66 ~
Ci(z) = In yz — Cin(x)

8

Curves for Ci (), In vz, and Cin (x) are compared in the graph.

Gi(x), ln Tx, and Cin{x) as a function of x

+3
Gin{ =]
+2 /"/j ol |
y ln Tx)/‘7
) / :-f},in(‘x)
Cin{x i
Gi(x)

/ Ci(x)
- —
"2 I 2 3 4 5 6 7

X

Si(z) = f sn;u du = sine integral
0

VU A AN i

Biw) =2 —gg+gE—qp +
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When z < 0.5, Si{r) >~

. T eOST
When z > 1, Si(z) ~ 5" &
Ein(z) = f L:ui— du = exponential integral
0
wherez = z -+ jy
. o
Ein(yy) = ; o
Ein(yy) = Cin(y) + j Si(y)
Ei(+jy) = Ci(y) £ 7 Siy)

19. Tables of Sine and Cosine Integrals. The following tables give
values for the sine integral Si(x), the cosine integral Ci(z), and for Cin(z)
for values of x from 0 to 50. Most of the entries in the tables have
been compiled from various sources’ but a considerable number, not to be
found elsewhere, were calculated.

1F, E. Terman, “Radio Engineers’ Handbook,” McGraw-Hill Book Company, Ine.,
New York, 1943, pp. 16-17. Gives Si{z) and Cin(z) [listed as Si(z)].

E. Jahnke and F. Emde, “Tables of Functions,” lithoreprint by Dover Publications,
New York, 1943, pp. 6-9. Gives Si(z) and Ci(z).

K. Tani, “Tables of si(z) and ci(z),” Naval Experimental and Research Establish~
ment, Tokyo, 1931. [si{z) = Si{z) — »/2, and ci{x) = Ci(z)].

“Tables of Sine, Cosine, and Exponential Integrals,” vol. 2, Federal Works Agency,
Works Projects Administration, for the City of New York, 1940. Gives Si(z) and Ci(x)
in increments of 0.001 but only up to z = 10.
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TABLE OF Si(z)

E Si(z) E Si(x) > Si(z) z Si(z)
0.0 0.0000 8.0 1.5742 16.0 1.6313 24.0 1.5547
0.2 0.1996 8.2 1.5981 16.2 1.6266 24.2 1.5476
0.4 0.3965 8.4 1.6198 16.4 1.6197 24 .4 1.5415
0.6 0.5881 8.6 1.6386 16.6 1.6111 24.6 1.5367
0.8 0.7721 8.8 1.6538 16.8 1.6011 24.8 1.5333
1.0 0.9461 9.0 1.6650 17.0 1.5901 25.0 1.5315
1.2 1.1081 9.2 1.6721 17.2 1.5787 26.0 1.5449
1.4 1.2562 9.4 1.6747 17.4 1.5671 27.0 1.5803
1.6 1.3892 9.6 1.6732 17.6 1.5560 28.0 1.6047
1.8 1.5058 9.8 1.6676 17.8 1.5457 29.0 1.5973
2.0 1.6054 10.0 1.6584 18.0 1.5366 30.0 1.56068
2.2 1.6876 10.2 1.6460 18.2 1.5291 31.0 1.5418
2.4 1.7525 10.4 1.6311 18.4 1.5234 32.0 1.5442
2.6 1.8004 10.6 1.6144 18.6 1.5197 33.0 1.5703
2.8 1.8321 10.8 1.5965 18.8 1.5181 34.0 1.5953
3.0 1.8487 11.0 1.5783 19.0 1.5186 35.0 1.5969
3.2 1.8514 11.2 1.5604 19.2 1.5212 36.0 1.5751
3.4 1.8419 11.4 1.5436 19.4 1.5257 37.0 1.5506
3.6 1.8220 11.6 1.5284 19.6 1.5319 38.0 1.5455
3.8 1.7933 11.8 1.5154 19.8 1.5395 39.0 1.5633
4.0 1.7582 12.0 1.5050 20.0 1.5482 40.0 1.5870
4.2 1.7184 12.2 1.4976 20.2 1.5577 41.0 1.5949
4.4 1.6758 12.4 1.4933 20.4 1.5674 42.0 1.5808
4.6 1.6325 12.6 1.4922 20.6 1.5771 43.0 1.5583
4.8 1.5900 12.8 1.4943 20.8 1.5864 41.0 1.5481
5.0 1.5499 13.0 1.4994 21.0 1.5949 45.0 1.5587
5.2 1.5137 13.2 1.5071 21.2 1.6023 46.0 1.5798
5.4 1.4823 13.4 1.5172 21.4 1.6082 47.0 1.5918
5.6 1.4567 13.6 1.5291 21.6 1.6126 48.0 1.5845
5.8 1.4374 13.8 1.5423 21.8 1.6153 49.0 1.5651
6.0 1.4247 14.0 1.5562 22.0 1.6161 50.0 1.5516
6.2 1.4187 14.2 1.5704 22.2 1.6151
6.4 1.4192 14.4 1.5841 22 4 1.6124
6.6 1.4258 14.6 1.5970 22.6 1.6081
6.8 1.4379 14.8 1.6085 22.8 1.6023
7.0 1.4546 15.0 1.6182 23.0 1.5955
7.2 1.4751 15.2 1.6258 23.2 1.5877
7.4 1.4983 15.4 1.6309 23.4 1.5795
7.6 1.5233 15.6 1.6336 23.6 1.5710
7.8 1.5489 15.8 1.6337 23.8 1.5626
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1 1
o Ci(x) T Ci(z) I Ci(z) T Ci(z)
0.01 [—4.0280 { 5.40 |[—0.1544 | 14.40 | 0.0677 | 23.40 |—0.0417
0.02 —3.3349 5.60 {-—0.1287 14.60 0.0628 | 23.60 |—0.0423
0.03 —2.9296 5.80 |—0.0994 14.80 0.0555 | 23.80 |—0.0411
0.04 |—2.6421 6.00 |[—0.0681 | 15.00 | 0.0463 | 24.00 |—0.0383
0.05 |—2.4191 6.20 |—0.0359 | 15.20 | 0.0354 | 24.20 |-0.0341
0.10 |—1.7279 | 6.40 |—0.0042 | 15.40 | 0.0234 | 24.40 |-—0.0286
0.15 —1.3255 6.60 0.0258 15.60 0.0108 | 24.60 |—0.0220
0.20 —1.0422 6.80 0.0531 15.80 |—0.0019 | 24.80 |—0.0147
0.25 —0.8247 7.00 0.0767 16.00 |—0.0142 | 25.00 |—0.0068
0.30 —0.6492 7.20 0.0960 16.20 |—0.0257 | 26.00 |[—0.0283
0.35 -0.5031 7.40 0.1104 16.40 |—0.0358 | 27.00 0.0357
0.40 —0.3788 7.60 0.1196 16.60 |—0.0443 | 28.00 0.0108
0.45 |-0.2715| 7.80 | 0.1238| 16.80 [—0.0509 | 29.00 |-—0.0219
0.50 | —0.1778 [ 8.00 | 0.1224 | 17.00 |—0.0552 | 30.00 |—0.0330
0.55 —0.0953 8.20 0.1164 17.20 {—0.0573 | 31.00 |—0.0140
0.60 [—0.0223| 8.40 | 0.1061 [ 17.40 |—0.0571 | 32.00 0.0164
0.65 0.0427 | 8.60 0.0919 | 17.60 |—0.0546 | 33.00 0.0303
0.70 0.1005 | 8.80 0.0747 | 17.80 |—0.0500 | 34.00 0.0163
0.75 0.1522 | 9.00 0.0553 | 18.00 |—0.0435 ( 85.00 |—0.0115
0.80 0.1983 | 9.20 0.0345 | 18.20 |—0.0354 | 36.00 |—0.0274
0.85 0.2394 | 9.40 0.0133 | 18.40 |—0.0261 | 37.00 |—0.0179
0.90 0.2761 9.60 |-—0.0077 18.60 [—0.0160 | 38.06 0.0071
0.95 0.3086 | 9.80 {—0.0275 | 18.80 |—0.0054 | 39.00 0.0245
1.00 0.3374 | 10.00 [—0.0455 | 19.00 | 0.0052 | 40.00 0.0190
1.20 0.4205 | 10.20 |—0.0609 | 19.20 | 0.0153 | 41.00 |—0.0033
1.40 0.4620 | 10.40 |—0.0733 | 19.40 | 0.0246 | 42.00 |—0.0216
1.60 0.4717 | 10.60 |—0.0824 | 19.60 | 0.0327 | 43.00 |-0.0196
1.80 0.4568 10.80 |-—0.0878 19.80 0.0394 | 44.00 }{-—0.0001
2.00 0.4230 | 11.00 |—0.0896 | 20.00 | 0.0444 | 45.00 0.0186
2.20 0.3751 | 11.20 |—0.0877 | 20.20 | 0.0476 | 46.00 0.0198
2.40 0.3173 | 11.40 |—0.0824 | 20.40 | 0.0487 | 47.00 0.0031
2.60 0.2533 | 11.60 |[—0.0740 | 20.60 | 0.0480 | 48.00 |—0.0157
2.80 0.1865 { 11.80 |—0.0630 | 20.80 | 0.0453 | 49.00 |-—0.0196
3.00 0.1196 12.00 |[—0.0498 | 21.00 0.0409 | 50.00 |{—0.0056
3.20 0.0553 | 12.20 [—0.0350 | 21.20 | 0.0349
3.40 |—-0.0045 | 12.40 |-0.0194 | 21.40 | 0.0277
3.60 -0.0580 12.60 | —0.0034 | 21.60 0.0195
3.80 |~0.1038 | 12.80 0.0121 | 21.80 | 0.0107
4.00 —0.1410 13.00 0.0268 | 22.00 0.0016
420 |—0.1690 | 13.20 | 0.0399 | 22.20 |-0.0073
4.40 |—0.1877 | 13.40 0.0510 | 22.40 |—0.0159
4.60 |—0.1970 | 13.60 0.0598 | 22.60 |-0.0236
4.80 {—0.1976 | 13.80 0.0660 | 22.80 |—0.0303
500 |—0.1900 | 14.00 | 0.0694 | 23.00 }—0.0357
5.20 ~0.1753 14.20 0.0699 | 23.20 |—0.0395
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TABLE OF Cin(z)

z Cin(z) z Cin(x) z Cin(zx) x Cin(zx)
0.0 0.0000 8.0 2.5342 16.0 3.3640 24.0 3.7936
0.2 0.0100 8.2 2.5649 16.2 3.3879 24.2 3.7977
0.4 0.0397 8.4 2.5994 16.4 3.4103 24.4 3.8004
0.6 0.0887 8.6 2.6370 16.6 3.4310 24.6 3.802¢
0.8 0.1558 8.8 2.6772 16.8 3.4495 24.8 3.8027
1.0 0.2398 9.0 2.7191 17.0 3.4657 25.0 3.8030
1.2 0.3391 9.2 2.7619 17.2 3.4795 26.0 3.8070
1.4 0.4517 9.4 2.8047 17.4 3.4908 27.0 3.8373
1.6 0.5755 9.6 2.8467 17.6 3.4997 28.0 3.8985
1.8 0.7082 9.8 2.8871 17.8 3.5064 29.0 3.9664
2.0 0.8474 10.0 2.9253 18.0 3.5111 30.0 4.0118
2.2 0.9906 10.2 2.9605 18.2 3.5140 31.0 4.0252
2.4 1.1354 10.4 2.9923 18.4 3.5157 32.0 4.0265
2.6 1.2794 10.6 3.0205 18.6 3.5163 33.0 4.0434
2.8 1.4204 10.8 3.0446 18.8 3.5165 34.0 4.0873
3.0 1.5562 11.0 3.0647 19.0 3.5166 35.0 4.1441
3.2 1.6851 11.2 3.0808 19.2 3.5169 36.0 4.1881
3.4 1.8055 11.4 3.0932 19 .4 3.5179 37.0 4.2060
3.6 1.9161 11.6 3.1023 19.6 3.5200 38.0 4.2077
3.8 2.0160 11.8 3.1083 19.8 3.5235 39.0 4.2163
4.0 2.1045 12.0 3.1119 20.0 3.5285 40.0 4.2471
4.2 2.1813 12.2 3.1137 20.2 3.5354 41.0 4.2941
4.4 2.2465 12.4 3.1143 20.4 3.5440 42.0 4.3365
4.6 2.3003 12.6 3.1144 20.6 3.5546 43.0 4.3580
4.8 2.3434 12.8 3.1145 20.8 3.5669 4.0 4.3615
5.0 2.3767 13.0 3.1154 21.0 3.5809 45.0 4.3653
5.2 2.4011 13.2 3.1175 21.2 3.5963 46.0 4.3860
5.4 2.4180 13.4 3.1214 21.4 3.6129 47.0 4.4243
5.6 2.4287 13.6 3.1275 21.6 3.6304 48.0 4.4641
5.8 2.4345 13.8 3.1358 21.8 3.6484 49.0 4.4886
6.0 2.4370 14.0 3.1469 22.0 3.6666 50.0 4.4948
6.2 2.4376 14.2 3.1605 22.2 3.6847
6.4 2.4377 14.4 3.1768 22.4 3.7022
8.6 2.4385 14.6 3.1955 22.6 3.7188
6.8 2.4411 14.8 3.2163 22.8 3.7343
7.0 2.4464 15.0 3.2390 23.0 3.7484
7.2 2.4553 15.2 3.2631 23.2 3.7609
7.4 2.4683 15.4 3.2881 23.4 3.7717
7.6 2.4858 15.6 3.3136 23.6 3.7807
7.8 2.5078 15.8 3.3391 23.8 3.7880
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20. General Poynting Vector and Directivity Formulas. The derivation
of a number of special Poynting vector relations used in the text from the
more general relations is given in this section. Their application to radiated
power and directivity formulas is also considered.

The instantaneous Poynting vector P; is given by

P,=EXH (1}
In the far field, the field components are transverse so that (see coordinates
of Fig. 2-16)
E = a,E, + a,F; = a,F,, cos wt + a,Fy cos (wt + 3) 2
and

H=—-aH, +aH, = —a;Hy cos (wt+ % +a,Hycos(wt+54+5 (3)

The instantaneous Poynting vector is then

P'. = —aq, X aaE¢H0 + ay X a¢EaH¢ = ar(E¢HO + E0H¢) (4)
and its radial component is
Pri = E¢Hﬂ + E€H¢ (5)

The average value P, is obtained by the integration of (5) over one cycle
as given by

1 2r
P, = f (B Hy + BoH,) d(wl) ©)
T Jo
from which
P, = LE,Hy cost + 3E4H, cos ¢ )]

The magnitudes of the far-field components are related by

E, _E,

- A | ®
so (7) can be written
P, = 1H},Z cost + yH,Z cos ¢ ©)
But Z cos ¢ = Re Z. In free space Z = Z, = 120w, which is real, so
Re Z = Z; and
P, = 22 (Hi, + Hi) = 60r(Hio + Hi) (10
or

_ Bl + Ei _ Eg + Eis
T 22, T 240r

P, 1n
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The above derivation may also be made using complex notation as fol-
lows. The complex Poynting vector is

P = 1E X H* (12)
In the far field, the field components are transverse so that
E = a,E, + a,E, = a,Eue’ " + ajBye " (13)
H* = —a,H¥ + a,H} = —a,Hpe 'Y 4 a Hye /0 (14)
The average Poynting vector (time average) is given by

P = {Re (E X H*) = 1a, Re (E,Hf + E,H})
= 3a,(EuHgo c0s & + EgHyo cos §) (15)

The radial component of the average Poynting vector is then
P, = 3E,Hy cos & + 3EzH, cos ¢ (16)
as in (7) and, hence, in free space P, reduces to the same form as in (10) and
(1%1(3 total power W radiated through a large sphere is then
W = ffP,ds - f“ ere(E‘,,H;‘ + E,HE) sin 0 d6 do
T a7
-y f:' forRe (EHf + E,HY) d2

where dQ = sin 6 df d¢p = element of solid angle
From (17)

2r T 2 2w -
W=z [ [+ myae=gz [0 @+ myae 09

In general E,, and Ey may be different functions of § and ¢. Thus,

Em = E1F1(97 ¢) (19)
and

By = EF8, ¢) (20)

The directivity D of an antenna is given by

DA™ A 7 1)

where P,,, is the value of the radial component of the average Poynting
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vector in the direction from the source in which it is a maximum. From

(11) .
— [Ezo + E:O]mnx _ [E?F?(B, d’) + Eng(o’ d’)]““"
Prm - 2ZO - 2ZO (22)
From (18) and (19)
rz Ir x
=ﬁ;££[HMQ@+MﬂM@N9 (23)

Introducing (22) and (23) in (21), the directivity of an antenna of any
polarization is

- 4 _ %r (24)
[ [ w9 + B, 9) an
(BIFI(6, ¢) + £:F3(6, 8)]nas
where B = beam area
Equation (24) may also be expressed
(244a)

D = 2x x 47r
[ [ Fee a0
0 9
Fz(o) ¢)qu

where F(6, ) = total field pattern
For F(8, ¢)max = 1, (24a) reduces to (15-6). If both field components have
identical patterns

so that

D = 2r x 47r (26)
[ [ Fe, 9 a0
0 n
Fi(6, ¢)mas

Whenever (25) is fulfilled, the directivity of a source of any polarization is
a function of the space pattern of only a single field component. If also
Fi(8, ¢)max = 1, (26) reduces to

D=——*T (27)
[ [ Fe e ae
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In the denominator of (24) the integrand divided by the denominator is
equal to the relative radiation intensity pattern [f(8, ¢)/f(8, ¢)msx) S0 that
(24) reduces to (2-39).

The above expressions apply to fields of any polarization. It is to be
noted that the relations are independent of the time-phase difference &
between E, and K,.

If the field is linearly polarized, for example, let it be everywhere hori-
vontally polarized, Es, = H, = E, = 0, and (24) reduces to (26).
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Abraham, M., 230, 273
Abramowitz, M., 168
Absolute gain, 455
Adams, N. L., 250, 273
Admittance per square, 364
Aharoni, J., 127, 254, 273
Albert, G. E., 230
Alford, A., 8, 127, 149, 167, 360, 412, 423,
429, 433
Alford loop, 429
Antenna (see specific type)
definition of, 1, &
Antenna adjustments of polarization, 474
Antenna region, 5-8
Aperture, beam widths of, 380
circular, 343
collecting, 48
of dipole, 49
effective, 42
of isotropic source, 53
loss, 48
maximum effective, 42
maximum scattering, 47
physical, 48
rectangular, 115, 344
relation of, to directivity, 52
to gain, 52
scattering, 45
square, 345
table, 54
of 4-wavelength antenna, 51
Aperture distributions, 343-350
Aperture patterns, 120, 350
Aperture plane, 337
Approximation formulas, 509
Arbitrary shape, 228
Aronoff, M., 185, 463
Arrays, broadside, 57, 79, 93-110, 279
closely spaced, 295
driven, 292, 300
end-fire, 62, 288

increased directivity, 81-83
ordinary, 79-81
of linear antennas, 279-323
of point sources, 57-110
stacked, 312, 424-431
wave-guide type, 356
Artificial dielectrics, 390-394
Ashmead, J., 325
Axial mode, 175, 182
Axial ratio, 181, 203, 468
Azimuth, geodetic, 71

B

Babinet’s principle, 361-364
Bagby, C. K, 191
Baker, B. B, 115
Ballentine, S., 252
Baluns, 423, 441
Band width, 208, 433-439
of lens antennas, 397
Barkofsky, . C., 41, 412, 433, 455
Barrow, W. L., 375-381, 395
Barzilai, G., 463
Beam area, 24, 542
Beam widths, 83, 87, 95
for helices, 213
for horns, 380
Bechmann, R., 254, 274
Beck, A. C., 408-412
Bennett, F. D., 441
Bessel functions, 162-170, 378
Beverage, H. H,, 412
Beverage antenna, 149, 412
Bhargava, B. N., 461, 462
Biconical antenna, 4-7, 217-229
characteristic impedance of, 217
equivalent line for, 224
finite, 223 :
infinite, 223
input impedance of, 222
pattern of, 228
Bieonical horn, 372, 381
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Billboard antenna, 118, 327

Binomial coefficients, 510

Binomial distribution, 93-97

Binomial series, 509

Bock, E. L., 423

Bond, D. 8., 433

Booker, H. G., 354-369

Born, M., 115, 361, 465, 476

Boundary sphere, 4

Boundary-value method, 230, 272

Boxed-in slot antenna, 354-359

Braun, F., 431

Broad-band antennas, 8, 208

Broadside array, 57, 79, 90, 118, 279

Brown, G. H., 71, 243, 266, 268, 282, 284,
292-295, 314-320, 326, 420427, 431,
485

Bruce, E., 408-411

Bruce antenna, 414

Briickmann, H., 413

Burgess, R. E., 272

Burrows, C. R., 438

Buss, R. R., 457

Carson, J. R., 252
Carter, P. S., 254, 269-274, 302
Characteristic immpedance, of biconical an-
tennas, 217
of transniission lines, 507
Charts, pattern, 78, 519-534
polarization, 473, 474, 482, 483
Chireix, H., 179, 414
Chireix-Mesny array, 414
Christensen, J. W., 457
Chu, L. J,, 177, 193, 250, 273, 375-381,
395, 434
Cin function, 144, 260
relations of, 535
table of, 539
Circular aperture, 344
Circular horn, 372, 381
Cireular loops, 155-170
Circular polarization, 203, 464-484
Circular reflector, 325
Circularly polarized antennas, dipole type,
424, 430
helical type, 173-216, 430
slanted dipole type, 430
slotted cylinder type, 430
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Clark, H. K., 41, 455
Cleckner, D. C., 821
Closely spaced array, 295-300
Clover-leaf antenna, 429
Coleman, P. D., 441
Collecting aperture, 48
Compensating line, 439
Complementary antennas, 356-371
impedance of, 367-371
Complementary screens, 361-367
impedance of, 364-367
Complex polarization parameter, 484
Complex Poynting vector, 541
Conical horn, 372, 381
Conical input sections, 249
Constrained lens, 396
Continuous array, 110-121
Corner reflector, passive, 324-325
Corner-reflector antenna, 324, 328-336,
338
Copson, L. T., 115
Cosine distribution, 350
Cosine integral, 145, 260, 265
relations of, 535
table of, 538
Cosine squared distribution, 350
Cox, C. R., 270
Curl, 510
Current distribution, on cylindrical ane
tennas, 239-241, 462
on helices, 183
measurement of, 461-464
Current moment, 162
Curtain arrays, 413
Cutler, C. C., 177, 193, 339, 449-456
Cylindrical antenna, 230-250
conical input of, 249
current distribution of, 239-241, 462
input impedance of, 241
patterns of, 247
thin, 247
Cylindrical parabolic reflector, 346

D
Db (decibel) directivity, 27
Db gain, 27
Debye, P., 404

Degrees, 511
Delay lenses, 383
de Moivre’s theorem, 508
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Dielectric constant, 384, 385, 497
Dielectric lens antennas, 382-394
Dimensions, 493-501
Dipole, short, aperture of, 49
fields of, 127-135, 137-139
magnetic, 157
radiation resistance of, 136
table of field formulas for, 135
Direction-finding antennas, 433
Directions, of pattern maxima, 90
of pattern nulls, 83
Directivity, approximate formulas for, 25
definition of, 23, 453
general formulas for, 540-543
of helices, 197, 213
of horns, 379, 380
of loops, 169
relation of, to aperture, 52
Directivity calculations, 23-26
graphical, 40 (Prob, 2-5)
Directrix, 337
Disc antenna, 421
Discone antenna, 420
Distance requirement, 448
Distributions, binomial, 93-97
cosine, 350
cosine squared, 350
Dolph-Tchebyscheff, 93-110
edge, 93-97
for lens antennas, 387
optimum, 93-110
for parabolic reflectors, 342, 343
tapered, 339, 347
triangular, 350
uniform, 115, 339, 349
Divergence, 510
Dolph, C. L., 96
Dolph-Tchebyscheff distribution, 93-110
Dorne, A., 228, 243, 245, 325, 348, 356~
360, 375, 381, 408, 423, 480
Driven array, 292, 300
Driving-point impedance, 282, 290

E

Eccentricity, 468

Edge distribution, 93-97

Effective aperture, 42
maximum, 44

Effective height, 44

Effeciiveness ratio, 49
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Electromagnetie spectrum, 3
Elevation angle, 303-318
Ellipsoidal antenna, 230, 249

Elliptical polarization, 464-484
Elliptical reflector, 325

Ellipticity, 468

Emde, F., 168, 536

Empirical mmethod, 276

End-fire array, 62, 79-81, 187, 288
7-plane lens, 382, 394-403
Epstein, J., 427

Equality of path length, 336
Equivalent loop, 429

Equivalent radius, 238

Euler’s constant, 535

Everitt, W. L., 434

Lxponential horn, 371

Exponential integral relations, 260, 265,

536
Exponential line, 438

F

F number, 340, 385
Far field, 6
Feed point, effect of, 414
Feldman, C. B., 412
Felsenheld, G. A., 420, 429
Field, L. M., 177
Field distribution (see Distributions)
Field intensity at one mile, 317
Field patterns, 27-32
azimuthal, 308
Fields, comparison of, loop and dipole,
160-161
dipole, 127-139
table of, 135
of linear antenna, 139-153
loop, 155-172
magnetic dipole, 158
(Sce also specific antenna, fields or patterns
of)
Flat sheet reflector, 325-328
Flat-top beam antenna, 297-300
above ground, 309
tilt, 312
Flush disc antenna, 421
Flush slot antenna, 355
Folded dipoles, 415-419
Foster, D., 161-170, 408
Fourier series, 99
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Fourier transform, 348

[Fouty, R. A, 431

Frank, N. H., 115, 344
Fraunhofer pattern, 116
Fraunhofer region, 6
Frequency sensitivity, 433-439
f'resnel integrals, 379

Fresnel pattern, 116

Fresnel region, 6

Friis, H. T., 41, 54, 339, 348, 402, 412
Friis transmission formula, 54
Full-wave antenna pattern, 142

G

Gain, by comparison, 454
db, 27
definition of, 26
in field intensity, 26, 283, 284, 291
relation of, to aperture, 52
Glagser, O. J., 173, 186
Glingki, G., 161
Gradient, 510
Greene, F. M., 379
Grid reflector, 335
Grosskopf, J., 149
Ground, effect of, 303-318
Ground plane antennas, 420
dimensions of, 459

H

Half-wavelength antenna, aperture of, 51
field of, 142
radiation resistance of, 143-147
Hallkén, E., 230245, 273
Hallén’s integral equation, 233
first-order solution, 235
Hankel functions, 378
Hansen, W. W, 81, 86, 92, 190
Hansen and Woodyard condition, 81, 190,
406
Harper, A. E., 408, 409
Harrison, C. W., Jr., 232-239, 266
Helical antennas, 173-216
axial mode of, 182
axial ratio of, 203
current distribution of, 183
impedance of, 186
normal mode of, 179

ANTENNAS

patterns of, 194-203

table of formulas of, 213

tapered, 213

velocity of propagation on, 187

wide-band properties of, 208
Helicoidal cylindrical coordinates, 191
Helmholtz, Rayleigh-Helmholtz theorem,

252

Hemisphere pattern, 16
Hertz vector, 137
Hondros, D., 404
Horizontal antenna, above ground, 303
Horn antennas, 371-381

beam widths, 380

biconical, 372, 381

circular, 372, 381

conical, 372, 381

exponential, 371

optimum, 373-377

pyramidal, 372

rectangular, 371, 375

sectoral, E-plane, 371-381

H-plane, 371-381

tapered, 371
Horton, C. W., 406
H-plane horn, 371-381
H-plane lens, 403
Huygens’ principle, 115, 379
Hyperbolic reflector, 325
Hyperbolic relations, 508

I

Tans, H., 453
Tllumination of aperture, 343
Image elements, 303-318, 329
Image-plane technique, 458, 459
Images, 303-318
Impedance, characteristic, 217, 507
driving-point, 282, 290
empirical, 276
measurements of, 457
methods of calculating, 272
mutual, 251-278
self-, 241, 251-278
Impedance ratios, 438
Increased directivity, end-fire, 79-81
Index of refraction, 384
Isotropic source, 15
Isotropic aperture, 53
Istvanfty, E., 459
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Jackson, J. D., 177, 193
Jahnke, E., 168, 536
Jamieson, H. W., 441
Jansen, J. J., 381
Jeans, Sir James, 328
Jordan, E. C., 423

K

Kandoian, A. G., 167, 420, 421, 429

Keary, T. J., 348

Keen, R., 433

Kellogg, E. W, 412

Kimbark, E. W.. 439

King, A. P., 381, 449-453, 456

King, D. D., 243

King, L. V., 230

King, R. W. P., 232-239, 252, 266, 268,
416, 439, 457, 485

Kock, W. E., 300-397, 403, 449-453, 456

Komfner, R., 177

Kraus, J. D, 41, 149, 173-210, 295, 309,
312, 328, 412, 418, 431, 455, 481

Krutter, H., 450, 453, 455, 456

L

Labus, J., 314, 315
Laplacian, 510
Lazarus, D., 356-360, 457
Length chart, 3
Lens antennas, 382-404
artificial dielectric, 390-394
band-width, 397
constrained, 396
delay, 383
dielectric, 382-394
metal-plate, E-plane, 382, 394-403
H-plane, 403
nonmetallic dielectrie, 383-390
tilt, 389, 402
tolerances, 400404
zoned, 388-402
Lewis, F. D., 375, 402
Lewis. W. D., 339, 348
Lindenblad, N. E., 8, 182
Linear antennas, arrays of, 279-318
fields of, 139-143
radiation resistance of, 143148
traveling-wave type, 148-153
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Linear arrays, 76-118, 300
charts for, 78, 519-534
Linear polarization, 464-484
Logarithmic relations, 509
Long wire antennas, 148, 407413
Loop antennas, 155-172
Alford, 429
clover-leaf, 429
directivity of, 169
feed point of, 415
fields of, 155-172
radiation resistance of, 166
small, 155
square, 170, 415, 419, 429, 443
table of formulas for, 171
triangular, 429
vertical, 419
Loops, sampling, 461-464
Loss aperture, 48
Loss resistance, 295, 297, 331
Lowan, A. N., 168
Lowry, L. R., 408-412
Lucite, 385

M

Magnetic current, 159, 498
Magnetic dipole, 157-160
Magnetic dipole moment, 500
Marchand, N., 147
Marsh, J. A., 185, 192
Masters, R. W, 427
Matching arrangements, 434-442
Matching stubs, 438
Matching transformers, 434-442
Mattress array, 327
Maxima, directions of, 90
Maxwell’s equations, table of, 503-505
Measurements, 444-486
of current, 461-464
of models, 485
of polarization, 479481
Meier, A. 8., 441, 459
Mellor, J. W., 233
Metal-plate lenses, E-plane, 382, 394403
H-plane, 403
Method of images, 303-318
Miller, W. B, 423
Mimno, H. R., 416, 439, 457
Minor lobe maxima, 92
Model measurements, 485
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Mueller, G. I\., 404-406
Multiplication of patterns, 66-74
Murray, F. H., 271
Mutual impedance, 251-278
of parallel antennas, 262
collinear, 269
echelon, 269
side by side, 265
skew, 271
Mutual resistance, 267, 271

N

Natural resistance, 277
Near field, 6
Nelson, J., 423, 441, 457
Neumann funetions, 378
Nonmetallic dielectric, 383-390
Normal mode, 175, 179
Null directions, 83—88

table of, 87

0

Observation circle, 11
Omnidirectional antennas, 428-430
Optimum distribution, 93-110
Optimum helix, 210

Optimum horn, 373-377

Ordinary end fire, 79-81

P

Page, L., 250, 273
Parabolic reflector, 336-346
Paraboloidal reflector, 339
Paraffin, 385
Parasitic elements, 318--321
Pascal’s triangle, 95, 509
Pattern charts, 78, 519-534
Pattern measurements, 444-452
Pattern synthesis, 69-74
Patterns, field, 27-32

phase, 32-39

power, 13-23

of two vertical elements, 204

(See also specific antenna, patterns of).

Permeability, 500
Permittivity, 497

Phase error, 348

Phase measurements, 452

ANTENNAS

Phase patterns, 32-37
Phase shift, along antenna, 463
measurement of, 463
Phase velocity, 150, 187~194
Physical aperture, 48
Pidduck, F. B., 271
Pierce, J. RR., 177, 193
Pippard, A. B., 325
Pistolkors, A. A., 254, 274, 422
Plane sheet reflector, 325-328
Point sources, 11-40
arrays of, 57-110
1sotropie, 57-110
n, 57-66
nonisotropie, 66
two, 57-66

Polarization, antenna adjustments of, 474

charts of, 473, 474, 482, 483
circular, 464-484

left, 471

right, 471
clockwise, 470
counterclockwise, 470
ellipse, 468
elliptical, 464184

circularly polarized components of,

477

linearly polarized components of, 465

linear, 464484

measurements of, 479481
circular-component method, 481
linear-component method, 481

polarization-pattern method, 479

parameter, 484
pattern, 479
plane, 464
Polyethylene, 385
Polyglass, 385
Polynomial, Tchebyscheff, 102
Polyrod antennas, 404-407
Polystyrene, 385
Power factor, 385
Power gain, 26, 284
Power patterns, 13-23
Power-transfer ratio, 55
Poynting vector, 13, 136, 540
general formulas for, 540-543
Poynting vector method, 274
Primary pattern, 339
Prolate spheroid, 249-250
Pyramidal horn, 372
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Q, 299, 433
Quadratic equation, solution of, 509

R

Radians, 511
Radiated power, general formulas, 540-543
Radiating efficiency, 295-300
Radiation field, 279
Radiation intensity, 15
Radiation resistance, of dipole, short, 136
of linear antennas, 143-148
of loops, 166-169
measurement of, 457, 459
Radius, effective, 429
equivalent, 238
Ramo, 3., 127, 139
Ramsay, J. F., 349
Rationalized angles, 513
Rationalized units, 493
Rayleigh, Lord, 252
Rayleigh-Helmholtz reciprocity theorem,
252
Receiving antennas, 432
Reciprocity theorem, 252
Reflection coefficient, 506
Reflection method, 459
Reflectors, 324-350
circular, 325
corner, 324, 328-336, 338
cylindrical parabolic, 346
elliptical, 325
grid, 335
hyperbolic, 325
parabolic, 336-346
paraboloidal, 339
plane sheet, 325-328
square corner, 328
Reintjes, J. F., 457
Relative dielectric constant, 497
Relative permeability, 500
Relative permittivity, 497
Relative phase velocity, 150, 187-194
Resistance, characteristic, 222
loss, 297
radiation (see Radiation resistance)
Resonator, 1, 7
Retarded scalar potential, 129
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Retarded vector potential, 128
Rhodes, D. R., 375, 376, 422
Rhombic antennas, 148, 408-412
alignment-type, 409
compromise-type, 409
design formulas for, 411
maximum-E type, 409
Riblet, H. J., 96, 110
Rice, C. W., 412
Risser, J. R., 375, 378, 383, 386, 397, 400
Robbins, T. L., 441
Roberts, W. V. B,, 416
Rotation experiments, 484
Rowland, H. J., 441
Rumsey, V. H., 367, 482, 483
Rumsey and Tice polarization charts, 482,
483
Rutile, 385

S

Sampling loops, 461-464
Scattering aperture, 45
Scattering ratio, 46
Schelkunoff, 8. A, 4, 76, 84, 217, 223, 226,
248, 274, 365, 379, 404, 406
Secondary pattern, 339, 340
Sectoral horns, 371-381
Self-impedance, 251-278
empirical, 276
thin linear-antenna, 254
Self-reactance, 251, 272
Self-resistance, 251, 272
Shape-impedance relation, 8
Short dipole (see Dipole, short)
Sichak, W., 420
Side length, 334
Silver, 8., 339, 344-349, 375, 378, 383, 386,
397, 400, 450-456
Sinclair, G., 423, 424, 485, 486
Sine integral, 146, 260, 265
Sine integral relations, 535
table of, 537
Single-turn patterns, 197
Slater, J. C., 41, 115, 339, 344, 438, 457
Sleeve antennag, 9, 422
Slot antennas, 353371
array of, 356
impedance of, 367-371
patterns of, 356-361
Slotted antenna, 462
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Slotted cylinder antennas, 423, 430
Smith, C. E., 71, 316, 431
Smith, P, D. P., 226
Smith, P. H., 429, 434, 457
Smith chart, 457, 484
Snell’s laws, 386
Sommerfeld, A., 115
Sources, identical, 66

point, 11-37, 57-110

similar, 66
Southworth, G. C., 89, 381
Spacing-circumnference chart, 176
Spencer, R. C., 115, 349
Spheroidal antenna, 249
Square corner reflector, 328
Square loop, 170, 415, 419, 429, 443
Stavis, G., 41, 325, 348, 875, 381, 441, 455,

480

Sterba, E. J., 414
Sterba curtain array, 414
Stone, J. 8., 94
Stratton, J. A., 76, 115, 250, 273
Sturgeon, S. 8., 419
Summers, W. P., 459
Superturnstile antenna, 427
Surface admittance, 364
Symbols, 493-501
Synge, J. L., 230
Synthesis of patterns, 69-74

T

Table of, aperture beam widths, 380
aperture patterns, 350
apertures, 54
artificial dielectric materials, 393
beam widths, 83, 87, 95
binomial coefficients, 510
characteristic-impedance formulas, 507
Cin function, 539
corner-reflector formulas, 330
cosine integral, 538
dielectric constants, 385
dimensions, 439-501
dipole fields, 135
helix fermulas, 213
horn beam widths, 380
hyperbolic relations, 508
index of refraction, 385
loop and dipole fields, 161
leop formulas, 171

ANTENNAS

Maxwell’s equations, 503-505
minor lobe maxima, 92
mutual resistance, 267, 271
phase velocity, 194
polarization types, 471
power factor, 385
rhombic antenna design formulas, 411
self-reactance, 272
self-resistance, 272
sine integral, 537"
tolerances on lenses and reflectors, 402
transmission-line formulas, 506, 507
trigonometric functions of turn, 515-519
trigonometric relations, 507
units, 493-501
vector identities, 510
Tai, C. T., 226, 266
Tani, K., 536
Tapered distributions, 339, 347
Tapered helices, 213
Tapered horns, 371
Tapered line, 438
Taylor, T. T., 347, 434
Taylor’s series, 509
Tchebyscheff polynomial, 102
Terman, F. E., 71, 265, 375, 438, 457, 536
Terminal-impedance measurements, 457
Tice, T. E., 173, 187, 482, 483
Tilt angle, of flat-top beam antenna, 312
of helix pattern, 200
of lenses, 389, 402
of long wire pattern, 152, 407
of polarization ellipse, 475
Titanium dioxide, 385
Thin linear antenna, 139-153, 254
Three-element array, 320
T-match antenna, 418
Télke, F., 512
Tolerances, on lenses, 400-404
on reflectors, 402
table of, 402
Top loaded antenna, 421
Transform, Fourier, 348
Transmission coefficient, 506
Transmission formula, 54
Transmission lines, biconical, 4, 217-229
characteristic impedance of, 507
compensating-type, 439
definition of, 1
formulas for, 506, 507
input impedance of, 506
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matching arrangements, 283, 291, 434-
442

measurements on, 457

method of connection, 414

tapered, 8

terminated, 4, 506

tuning, 438
Traveling wave antenna, 148-153
Triangular antenna, 429, 443
Triangular distribution, 350
Trigonometric functions of turn, 515-519
Trigonometric relations, 507
Turns, 57, 511
Turnstile antennas, 424-428
Tyrrell, W. A, 404-406

U

Uniform arrays, charts for, 78, 519-534
Uniform distribution, 93-97, 115, 339, 349
Uniform field requirement, 449

Units, 493-501

Universal pattern charts, 78, 519-534

A%

V antennas, 407

VanAtta, L. C., 348

Vector identities, 510

Vector potential, 128, 130, 159

Vertex, 336

Vertical antenna, above ground, 314
Voltage gain (see Gain, in field intensity)
Volume arrays, 89

w

Watson, G. N., 167
Watson, R. B., 406
Watson, W. H., 356
Wave antenna, 149, 412
Wave equation, 232
Wave guide, broadside-array, 356
definition of, 1
horns fed by, 371-381
measurements in, 459
sectoral, 378
slot fed by, 355
Wave polarization, 464-484
Wave polarizer, 431
Wheeler, H. A., 173, 181, 328, 438
Whinnery, J. R., 127, 139, 441
Whitmer, R. M., 404
Wide-band characteristics (see Band width)
of helical antennas, 208
Wilkes, G., 405
Williamson, J. C., 149, 173, 184, 519
Wing, A. H., 416, 439, 457
Winternitz, T. W., 252
Wolff, 1., 99
Woodward, O. M., Jr., 243, 431
Woodyard, J. R., 81, 86, 92, 190

Y
Yagi, H,, 321
Z

Zoned lenses, 388-402
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